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▪ A system having a service facility at which units of some kind arrive for 
service; whenever there are more units in the system than the service facility 
can handle simultaneously, a queue (or waiting line) develops.

▪ In simple terms, a queuing system consists of a demand source, a queue 
and a service facility with one or more identical parallel servers

▪ A queuing network is a set of interconnected queuing systems 

Queuing Systems
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Check-in Queuing System Supply Chain Queuing System



▪ Queuing Theory is concerned with the behavior of waiting lines (delays/congestion)

▪ Fundamental parameters of a queuing system:

Queuing Theory
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• Demand Rate

• Service Rate

• Probability distribution of demand inter-arrival times

• Probability distribution of service times

• Queue discipline (FCFS, SIRO, priorities, etc).

Arrival Distribution Service Distribution

QueueSource of 
Arrivals

Servers
Served 

Costumers



Kendal Notation
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What is a M/M/1 queueing system?



Little’s Law
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𝑾 =𝑾𝒒 + 𝟏/𝝁

𝑳𝒒 = 𝝀𝑾𝒒 𝑳 = 𝝀𝑾

𝑳 = 𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒖𝒔𝒆𝒓𝒔 𝒊𝒏 𝒒𝒖𝒆𝒖𝒆𝒊𝒏𝒈 𝒔𝒚𝒔𝒕𝒆𝒎 (𝒕𝒉𝒐𝒔𝒆 𝒊𝒏

𝒒𝒖𝒆𝒖𝒆 𝒑𝒍𝒖𝒔 𝒕𝒉𝒐𝒔𝒆 𝒓𝒆𝒄𝒆𝒊𝒗𝒊𝒏𝒈 𝒔𝒆𝒓𝒗𝒊𝒄𝒆)

𝑳𝒒 = 𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒖𝒔𝒆𝒓𝒔 𝒊𝒏 𝒒𝒖𝒆𝒖𝒆

𝑾 = 𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒕𝒊𝒎𝒆 𝒊𝒏 𝒒𝒖𝒆𝒊𝒏𝒈 𝒔𝒚𝒔𝒕𝒆𝒎 𝒑𝒆𝒓 𝒖𝒔𝒆𝒓

(𝒘𝒂𝒊𝒕𝒊𝒏𝒈 𝒕𝒊𝒎𝒆 𝒑𝒍𝒖𝒔 𝒔𝒆𝒓𝒗𝒊𝒄𝒆 𝒕𝒊𝒎𝒆)

𝑾𝒒 = 𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒕𝒊𝒎𝒆 𝒊𝒏 𝒒𝒖𝒆𝒖𝒆 𝒑𝒆𝒓 𝒖𝒔𝒆𝒓

𝑳 = 𝑳𝒒 + 𝝀/𝝁

▪ Obtain one of the performance measures, the other three can be computed



▪ MMS Queueing System

Important Result from Queueing Theory
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Arrival Distribution Service Distribution

QueueSource of 
Arrivals

Servers
Served 

Costumers

𝑰 =
𝝀

𝝁

𝝆 =
𝑰

𝒔

𝑷𝟎 =
𝟏

σ𝒏=𝟎
𝒔−𝟏 𝑰

𝒏

𝒏!
+

𝑰𝒔

𝑺! 𝟏 − 𝝆

Intensity

Utilization Ratio

Probability that there are 0 

customers in the system

𝑳𝒒 =
𝑷𝟎𝑰

𝒔𝝆

𝑺! 𝟏 − 𝝆 𝟐
Mean number of customers in 

the queue

Steady-state Conditions



Steady-state Conditions
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▪ Rho = ratio of demand rate vs service 

rate

▪ As loads on system increase, average 

waiting time increases exponentially

▪ Practical capacity = less than throughput 

capacity due to excessive delays

▪ Note that graph is for steady state 

conditions
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Example – Vaccination Stalls
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▪ We aim to compute the minimum number of stalls required in a 
vaccination centre*.

▪ The service rate per stall is about 30 services per hour

▪ Minimum number of stalls to open?

Time Demand

04:00 0
05:00 0
06:00 40
07:00 320
08:00 1120
09:00 2280
10:00 2480
11:00 2480
12:00 2160
13:00 1880
14:00 2240
15:00 2440
16:00 2760
17:00 3200
18:00 2600
19:00 1680
20:00 960
21:00 320
22:00 40
23:00 0*I used exactly the same example for airport security checkpoints in 40.321 Airport Systems Modeling and Simulation
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▪ We aim to compute the minimum number of stalls required in a 
vaccination centre*.

▪ The service rate per stall is about 30 services per hou

▪ Minimum number of stalls to open?

Time Demand

04:00 0
05:00 0
06:00 40
07:00 320
08:00 1120
09:00 2280
10:00 2480
11:00 2480
12:00 2160
13:00 1880
14:00 2240
15:00 2440
16:00 2760
17:00 3200
18:00 2600
19:00 1680
20:00 960
21:00 320
22:00 40
23:00 0*I used exactly the same example for airport security checkpoints in 40.321 Airport Systems Modeling and Simulation

𝑫𝒆𝒎𝒂𝒏𝒅 𝑹𝒂𝒕𝒆

𝑺𝒆𝒓𝒗𝒊𝒄𝒆 𝑹𝒂𝒕𝒆

𝟑𝟐𝟎𝟎

𝟑𝟎
= 𝟏𝟎𝟔. 𝟔𝟔 𝒔𝒆𝒓𝒗𝒆𝒓𝒔

Under Steady State 

Conditions

Easy Answer



Example – Steady State Results
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Time Dem. Min Check-in

Q Model

Expected Time in 

System (min)

04:00 0 0 0

05:00 0 0 0

06:00 40 2 3.6

07:00 320 11 7.32

08:00 1120 38 4.63

09:00 2280 77 3.74

10:00 2480 83 7.74

11:00 2480 83 7.74

12:00 2160 73 3.73

13:00 1880 63 7.7

14:00 2240 75 7.72

15:00 2440 82 4.74

16:00 2760 93 3.76

17:00 3200 107 7.77

18:00 2600 87 7.74

19:00 1680 57 3.7

20:00 960 33 3.61

21:00 320 11 7.32

22:00 40 2 3.6

23:00 0 0 0

𝑰 =
𝝀

𝝁

𝝆 =
𝑰

𝒔

𝑷𝟎 =
𝟏

σ𝒏=𝟎
𝒔−𝟏 𝑰

𝒏

𝒏!
+

𝑰𝒔

𝑺! 𝟏 − 𝝆

𝑳𝒒 =
𝑷𝟎𝑰

𝒔𝝆

𝑺! 𝟏 − 𝝆 𝟐



▪ However, it is important to 
recognize that queues in many 
systems:

• Build up over time (non-
stationary state)

• Demand patterns are not 
constant over the day

• First arrivals get no delay, 
later arrivals join growing 
queue

Non-stationary Conditions
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Non stationary 
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▪ Many service and production systems operate under dynamic conditions. 
These systems are often named as non-stationary queueing systems, 
as steady state conditions are never achieved.

▪ A characteristic trait of these systems is that the demand rate may 
exceed the service capacity at certain periods of the day - temporal 
overloading.

▪ During overloaded periods queues build up - overloaded periods must be 
followed by periods of low demand to ensure that queues return to 
acceptable levels.

▪ Complex simulations models are often utilized to analyse and optimize 
the performance of these systems. However, optimization is generally 
difficult and time consuming due to the large number of variables that can 
be adjusted by decision-makers

Non-Stationary Queuing Systems
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▪ Examples of non-stationary queueing systems can be found everywhere: 
aviation systems (check-in, security checkpoints, flight scheduling); 
healthcare systems (resource and staff allocation), transportation systems
(crew and fleet allocation), logistic systems (delivery management), 
manufacturing systems (production management), computer systems 
(server allocation), etc.

▪ COVID vaccination centres are a recent example of a time-dependent, non-
stationary queueing system – demand and capacity vary considerably 
across different periods of the day – health officials need to manage the 
number of slots to make available per hour (demand rate control); and the 
number of staff required in the vaccination centres (service rate control); by 
considering the typical demand patterns (e.g. most people prefers to be 
vaccinated early or later in the day). 

Non-Stationary Queuing Systems
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▪ Steady-state equations are not valid in non-stationary queues

▪ We can use simulation models to mimic queues and optimize service and 
demand rates

Simulation Models
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Source: https://jaamsim.com/
Tutorial: https://www.youtube.com/watch?v=8DhFtfxZV0A

https://jaamsim.com/
https://www.youtube.com/watch?v=8DhFtfxZV0A


Discrete- Event Simulation – Steady State
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3200 Pax/hour= 1 Pax every 1.125 sec 30 Pax/hour= 1 Pax every 120 sec



Discrete- Event Simulation – Steady State
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Example – Steady State Results
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Time Dem.
Min Check-

in

Q Model JaamSim

Expected Time in 

System (min)

Expected Time in 

System (min)

04:00 0 0 0 0

05:00 0 0 0 0

06:00 40 2 3.6 3.59

07:00 320 11 7.32 7.82

08:00 1120 38 4.63 4.88

09:00 2280 77 3.74 3.88

10:00 2480 83 7.74 8.09

11:00 2480 83 7.74 8.09

12:00 2160 73 3.73 3.85

13:00 1880 63 7.7 8.55

14:00 2240 75 7.72 8.73

15:00 2440 82 4.74 5.12

16:00 2760 93 3.76 3.98

17:00 3200 107 7.77 8.44

18:00 2600 87 7.74 8.27

19:00 1680 57 3.7 3.83

20:00 960 33 3.61 3.67

21:00 320 11 7.32 7.82

22:00 40 2 3.6 3.59

23:00 0 0 0 0



Discrete- Event Simulation – NSS Conditions
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NS Conditions - Results

Open an Infinite Number 
of Servers
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NS Conditions - Results

107

Open 107 serves across 
the entire day

Under steady state conditions, the 
model predicts 8.88 mins of avg. 
Time in the system
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NS Conditions - Results

90

Open 90 serves across the 
entire day
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NS Conditions - Results

80

Open 80 serves across the 
entire day
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NSS Conditions - Results

70

Open 70 serves across the 
entire day



NS Conditions - Results
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▪ This analysis only shows part of the 
optimization process of non-
stationary systems

• What about having a variable 
number of servers across the day 
(no need to have 100 stalls open 
during the entire day)

• What about controlling the arrival 
demand by imposing slot limits 
(such as in vaccination centres, 
slot times are assigned to people)?

Multi-Objective Problem aiming to optimize 3 main objectives: level of service (e.g. 
minimize waiting time) ;  demand acceptance rate (minimize demand displacement) ; 
service costs (minimize the number of servers to open per hour)



Capacity Management in Non-Stationary Queuing 

Systems – NSGA II
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Capacity management is the field of research that aims to optimize 
infrastructure operations while having “just enough” resources required to 
run applications and services without interruptions in desired performance.

Two main capacity management strategies are implement:

▪ Increasing service capacity – By investing on resource capacity – more 
staff; more machines, more infrastructure, etc.

▪ Efficiently distributing demand – By imposing limits on scheduling – slot 
scheduling; demand rate control, etc.

Capacity Management

26



▪ Airport infrastructure Capacity is fixed by the number of runways in the 
airport – for instance Changi Airport runway system have a capacity of 
around 10 arrival flights every 15 minutes.

▪ Slot allocation is used to efficiently distribute demand across the day

▪ Question: How many slots to make available per hour given airport 
capacity constraints (i.e. no. of runways) and airline’s slot requests (i.e. 
slot times requested by the airlines to operate their flights)?

• Two main objectives to optimize: 

• Minimize expected fight delays in the airport 

• Minimize slot displacement to the airlines

• Decisions Variable

• Number of slots to make available per hour

Airport Slot Allocation Case Study

27



Airport Simulation
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▪ Outputs
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Declared Capacity Tool
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Legend:



▪ Outputs
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Declared Capacity Tool
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Slot Allocation Model



▪ Outputs
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Declared Capacity Tool
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Avg. Delays = 8.5 min
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Simulation Model
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Genetic Algorithm
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NSGA-II – After 1 hour of Computation
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1 1 1 … 0 1 0

Recall: NSGA-II
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Population
Fitness 

Evaluation
Selection

Crossover Mutation

Randomly 
Generated

1 0 0 … 1 1 0

Representation

𝑓(𝑥)

…

𝑓 𝑥 = 200

𝑓 𝑥 = 195

𝑓 𝑥 = 105

𝑓 𝑥 = 88

𝑓 𝑥 = 77

𝑓 𝑥 = 75

𝑓 𝑥 = 2

𝑓 𝑥 = 1

Parents
1 0 0 … 1 1 0

0 1 0 … 0 0 0

1 0 0 … 0 0 0

… …

1 0 0 … 1 1 0

1 1 1 … 0 0 0

…

1 0 0 … 1 0 0

1 0 1 … 0 0 0

Selection



▪ Classify the solutions into a 
number of mutually exclusive 
equivalent non-dominated 
pareto-fronts

Recall: Non-Dominated Sorting

35

Elitism

Parents

Offsprings

New Generation



Recall: Crowding Distance
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Front n

𝐶𝐷 =
𝑓1
𝑖+1 − 𝑓1

𝑖−1

𝑓1
𝑚𝑎𝑥 − 𝑓1

𝑚𝑖𝑛
+

𝑓2
𝑖+1 − 𝑓2

𝑖−1

𝑓2
𝑚𝑎𝑥 − 𝑓2

𝑚𝑖𝑛

𝐶𝐷 =

𝑀

𝑓𝑚
𝑖+1 − 𝑓𝑚

𝑖−1

𝑓𝑚
𝑚𝑎𝑥 − 𝑓𝑚

𝑚𝑖𝑛

𝑓1
𝑚𝑖𝑛

𝑓2
𝑚𝑎𝑥

𝑓2
𝑚𝑖𝑛

𝑓1
𝑚𝑎𝑥

𝑀 – Set of Objectives
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NSGA-II – Pareto-Frontier
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NSGA-II – Optimal Solutions

38



▪ Outputs
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through NSGA-II Algorithm
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Legend:

Avg. Delays = 8.5 min
Max. Delay Hour = 19.7 min
Total Displacement= 40 min

Avg. Delays = 8.0 min
Max. Delay Hour = 13.8 min
Total Displacement= 45 min

NSGA-II – Optimal Solutions
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Declared Capacity Algorithm
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Declared 
Capacities

Demand for 
Slot Requests

Flight Schedule

Predicted Flight Delays

Slot Allocation 
Model

Simulation 
Model

Genetic Algorithm 
(NSGA-II)

Black-Box

Black-Box



Meta-Modeling
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▪ It is well known that most of the time, in metaheuristics, the time-intensive 
part is the evaluation of the objective function. 

▪ In many problems, the objective function is quite costly to compute (e.g. 
simulations). 

▪ The alternative to reduce this complexity is to approximate the objective 
function and then replace the original objective function by its 
approximation function.

▪ This approach is known as meta-modeling

Meta-Models

43



Airport Simulation
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1 Hour of Computation to run 1 month of schedules – This invalidates  the 
iterative process we aim to apply by using metaheuristics approaches



▪ Many meta-modeling techniques may be employed for expensive 
objective functions. They are based on constructing an approximate 
model from a properly selected sample of solutions:

• Analytical Approximations

• Machine Learning Models

• Neural Networks

• Relaxed Simplified Model (e.g. ignore some constraints)

• Model Decomposition

▪ There is a trade-off between the complexity of the model and its accuracy. 

Meta-modeling Techniques
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Predicting Flight Delays

CAST Simulation Tool
Flight operations are simulated in 

very detail using agent-based 

simulation

Markov-Chains + Queuing Theory
Delays are approximated using 

mathematical equations derived from 

Markov-chain theory

Machine Learning  Models
Analyses historical data of flight 

delays to make predictions

Macroscopic 

Models

Microscopic 

Models
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Predicting Flight Delays

▪ We develop a random forest model to predict airport local delays by leveraging historic data 
from flight operations and meteorological conditions.

▪ Explanatory variables include: congestion indicators (no. arrivals, no. departures, 
congestion index, etc.), weather related variables (lightning count, wind speed, wind 
direction), queuing model predictions, time-of-the day dummy variables, etc.

Queueing Model - Prediction Random Forest - Prediction Top 5 Explanatory Variables

Q. Model Delays

No. Departures

No. Arrivals

No. Lightnings

Ext. Coef
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Predicting Flight Delays

CAST Simulation Model


