

Swarm Optimization

Nuno Antunes Ribeiro

Assistant Professor

Engineering Systems and Design

1

Approximate Optimization Methods

Swarm Behaviour

- Swarm behavior is the collective behavior of decentralized, self-organized systems. A typical swarm system consists of a population of simple agents which can communicate (either directly or indirectly) locally with each other by acting on their local environment.
- Examples in natural systems of swarm intelligence include bird flocking, ant foraging, and fish schooling
 - Swarm agents establish a social network
 - Swarm agents profit from the discoveries and previous experience of the other agents of the swarms
 - Swarm agents iteratively change their positions (i.e., decides how to move) using information from personal past experience and from its social neighborhood

Communication and Cooperation

- Boids is an artificial life program, developed by Craig Reynolds in 1986, which simulates the flocking behavior of birds. The name "boid" corresponds to a shortened version of "bird-oid object", which refers to a bird-like object
- Boids follow 3 fundamental rules are:
 - Birds are **attracted** to the location of the roost
 - Birds **remember** where it was closer to the roost
 - Birds **share information** with its neighbors about its closest location to the roost

Eventually, all agents land on the roost

- What if
 - Roost = (unknown) local optima of a function
 - Distance to the roost = quality of current agent position on the optimization landscape

Particle Swarm Optimization

- Particle Swarm Optimization cosists of simulating the movement of swarm bird-like particles (solutions)
- At each iteration, each particle is found at a position in the solution space
- The fitness of each particle represents the quality of its position on the optimization landscape
- Particles move over the search space with a certain velocity
- At each iteration the velocity of a particles is influenced by:
 - pbest: its own best positions found so far
 - gbest: the **global best solution** so far
- Eventually the swarm of particles will converge to optimal; positions

Swarm Optimization Algorithms

Algorithm	Proposed by year	Short description
Particle Swarm Optimization (PSO)	Kennedy et. al. (1995)	The algorithm simulates the movement of swarm bird-like particles
Ant Colony Optimization (ACO)	Dorigo et. Al. (1996)	The algorithm is inspired by the foraging behavior of some ant species.
Harmony Search (HS)	Geem et. al. (2001)	Search works on the principle of a musicial trying to identify a state of pleasing harmony
Honey-Bee Mating Optimization (HBMO)	Abbass (2001)	The algorithm is inspired by matting process of bees
Glowworm Swarm Optimization (GSO)	Krishnanand and Ghose (2006)	The search imitates the behaviour that a glowworm carries a luminescence quantity along with itself to exchange information
Firefly Algorithm (FFA)	Yang (2007)	The algorithm is inspired by the firecles and their ability to emit light through a biochemical process
Bat Algorithm (BA)	Yang (2010)	The algorithm is inspired by the echolocation of bats
Cuckoo Search (CS)	Yang and Deb (2010)	The algorithm is inspired by the obligate brood parasitism of some cuckoo species by laying their eggs in the nest of host birds
Multi-colony Bacteria Foraging Optimization (MCBFO)	Chen et. al. (2010)	The algorithm integrates the cell-to-cell communication strategies of multi-colony bacterial communities

Particle Swarm Optimization

Nuno Antunes Ribeiro

Assistant Professor

Bob 10 Anthony Jennifer

PSO Mathematical Model

$$\overrightarrow{X_i^{t+1}} = \overrightarrow{X_i^t} + \overrightarrow{V_i^{t+1}}$$

- Objective: maximize $f(X) = x_1^2 x_1x_2 + x_2^2 + 2x_1 + 4x_2 + 3$
- Where: $-5 \le x_1, x_2 \le 5$
- Population size = 5
- Inertia weight: w = 0.9
- Cognitive weight: $c_1 = 1.5$
- Social weight: $c_2 = 1.5$

Ite	ration 1		$f(X) = x_1^2 -$	$-x_1x_2 + x_2^2 + 2x$	$x_1 + 4x_2 + 3$	Since there previous ite pbest =	rations = x
v_1	v ₂	<i>x</i> ₁	<i>x</i> ₂	$f(\mathbf{X})$	<i>P</i> ₁	<i>P</i> ₂	$f(\mathbf{X})$
0.2194	0.2449	3.1472	-4.0246	31.9645	3.1472	-4.0246	31.9645
0.1908	0.2228	4.0579	-2.2150	32.6168	4.0579	-2.2150	32.6168
0.3828	0.3232	-3.7301	0.4688	13.2071	-3.7301	0.4688	13.2071
0.3976	0.3547	4.1338	4.5751	48.6753	4.1338	4.5751	48.6753
0.0934	0.3773	1.3236	4.6489	41.4537	1.3236	4.6489	41.4537
Velo	ocity	Pos	ition		G ₁	<i>G</i> ₂	$f(\mathbf{X})$
randomly U(generated 0,1)	randomly 11(generated		4.1338	4.5751	48.6753

Iteration 2

 $f(X) = x_1^2 - x_1x_2 + x_2^2 + 2x_1 + 4x_2 + 3$

	i1						
<i>v</i> ₁	<i>v</i> ₂	<i>x</i> ₁	<i>x</i> ₂	$f(\mathbf{X})$	<i>P</i> ₁	<i>P</i> ₂	$f(\mathbf{X})$
0.3240	1.3233	3.4712	-2.7013	27.8600			
0.1815	1.0714	4.2394	-1.1436	31.0325			
1.3531	0.8175	-2.3770	1.2863	13.7537			
0.3578	0.3192	4.4916	4.8943	53.7063			
0.4445	0.3301	1.7681	4.9790	45.5655			
1)				
					<i>G</i> ₁	G ₂	f(X)
$\overrightarrow{V_{\cdot}^{t+1}} = w \overrightarrow{V_{\cdot}^{t}} +$	$-c_{4}r_{4}\left(\overrightarrow{P_{t}^{t}}-\overrightarrow{X_{t}^{t}}\right)$	$+c_{2}r_{2}\left(\overrightarrow{G^{t}}-\overrightarrow{a}\right)$	$(\overrightarrow{X_{t}^{t}})$ $(\overrightarrow{v_{t+1}})$	$-\overrightarrow{vt}$ $\overrightarrow{vt+1}$			
		/ ¹ ² / ² (^d	X_i	$= \Lambda_i + V_i^{-1}$			

Iteration 2

pbest – previous iteration						
<i>P</i> ₁	<i>P</i> ₂	$f(\mathbf{X})$				
3.1472	-4.0246	31.9645				
4.0579	-2.2150	32.6168				
-3.7301	0.4688	13.2071				
4.1338	4.5751	48.6753				
1.3236	4.6489	41.4537				

<i>v</i> ₁	<i>v</i> ₂	<i>x</i> ₁	<i>x</i> ₂	$f(\mathbf{X})$	<i>P</i> ₁	<i>P</i> ₂	$f(\mathbf{X})$
0.3240	1.3233	3.4712	-2.7013	27.8600	3.1472	-4.0246	31.9645
0.1815	1.0714	4.2394	-1.1436	31.0325	4.0579	-2.2150	32.6168
1.3531	0.8175	-2.3770	1.2863	13.7537	-2.3370	1.2863	13.7537
0.3578	0.3192	4.4916	4.8943	53.7063	4.4916	4.8943	53.7063
0.4445	0.3301	1.7681	4.9790	45.5655	1.7681	4.9790	45.5655
١	١		١				
					G ₁	<i>G</i> ₂	$f(\mathbf{X})$
$\overrightarrow{V_{\cdot}^{t+1}} = w \overrightarrow{V_{\cdot}^{t}} +$	$-c_{t}r_{t}\left(\overrightarrow{P_{t}^{t}}-\overrightarrow{X_{t}^{t}}\right)$	$+c_{0}r_{0}\left(\overrightarrow{G^{t}}-\overrightarrow{a}\right)$	$\vec{X}_{t}^{\vec{t}}$) \vec{v}_{t+1}	$\overrightarrow{\mathbf{v}t}$ $\overrightarrow{\mathbf{v}t+1}$			
		$\int 1 c_{2} $	$X_i = X_i$	$=X_i^{\circ}+V_i^{\circ+1}$			

 $f(X) = x_1^2 - x_1x_2 + x_2^2 + 2x_1 + 4x_2 + 3$

gbest – previous iteration					
G_1	<i>G</i> ₂		f(X)		
4.1338	4.5751		48.6753		

Iteration 2

$$f(X) = x_1^2 - x_1x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$

<i>v</i> ₁	<i>v</i> ₂	<i>x</i> ₁	<i>x</i> ₂	$f(\mathbf{X})$	<i>P</i> ₁	<i>P</i> ₂	$f(\mathbf{X})$
0.3240	1.3233	3.4712	-2.7013	27.8600	3.1472	-4.0246	31.9645
0.1815	1.0714	4.2394	-1.1436	31.0325	4.0579	-2.2150	32.6168
1.3531	0.8175	-2.3770	1.2863	13.7537	-2.3370	1.2863	13.7537
0.3578	0.3192	4.4916	4.8943	53.7063	4.4916	4.8943	53.7063
0.4445	0.3301	1.7681	4.9790	45.5655	1.7681	4.9790	45.5655
			\				
					<i>G</i> ₁	<i>G</i> ₂	$f(\mathbf{X})$
$\overrightarrow{V_{t+1}^{t+1}} = w \overrightarrow{V_{t}^{t}} +$	$-c_{t}r_{t}\left(\overrightarrow{P_{t}^{t}}-\overrightarrow{X_{t}^{t}}\right)$	$+c_{0}r_{0}\left(\overrightarrow{Gt}-\overrightarrow{t}\right)$	\vec{x}_{t}^{t}) \vec{v}_{t+1}	$\overrightarrow{\mathbf{v}t}$ $\overrightarrow{\mathbf{v}t+1}$	4.4916	4.8943	53.7063
	$\gamma_1' \uparrow (i \Lambda_i)$		$T_i = X_i^{+1}$	$= X_i^{\circ} + V_i^{\circ}$			

Ite	ration 3	$f(X) = x_1^2 - x_1 x_2 + x_2^2 + 2x_1 + 4x_2 + 3$					
<i>v</i> ₁	<i>v</i> ₂	<i>x</i> ₁	<i>x</i> ₂	$f(\mathbf{X})$	<i>P</i> ₁	<i>P</i> ₂	$f(\mathbf{X})$
0.1334	0.9843	3.6045	-1.7170				
0.0337	0.7826	4.2731	-0.3611				
2.0987	1.1985	-0.2784	2.4848				
0.3221	0.2873	4.8137	5.2131				
0.7493	0.2862	2.5174	5.3678				
$\overrightarrow{V_i^{t+1}} = w\overrightarrow{V_i^t} + $	$-c_1 r_1 \left(\overrightarrow{P_i^t} - \overrightarrow{X_i^t} \right)$	$+c_2r_2\left(\overrightarrow{G^t} - \overrightarrow{a}\right)$	$\overline{X_i^t}) \left \begin{array}{c} \overline{X_i^{t+1}} \\ \overline{X_i^{t+1}} \end{array} \right $	$= \overrightarrow{X_i^t} + \overrightarrow{V_i^{t+1}}$	<i>G</i> ₁ 4.4916	G ₂ 4.8943	<i>f</i> (X) 53.7063

out of the bounds [-5,5]

Iteration 3

pbest – previous iteration					
<i>P</i> ₁	<i>P</i> ₂	$f(\mathbf{X})$			
3.1472	-4.0246	31.9645			
4.0579	-2.2150	32.6168			
-2.3370	1.2863	13.7537			
4.4916	4.8943	53.7063			
1.7681	4.9790	45.5655			

<i>v</i> ₁	v ₂	<i>x</i> ₁	<i>x</i> ₂	$f(\mathbf{X})$	<i>P</i> ₁	<i>P</i> ₂	$f(\mathbf{X})$
0.1334	0.9843	3.6045	-1.7170	25.4710	3.1472	-4.0246	31.9645
0.0337	0.7826	4.2731	-0.3611	30.0346	4.0579	-2.2150	32.6168
2.0987	1.1985	-0.2784	2.4848	19.3259	-0.2784	2.4848	19.3259
0.3221	0.2873	4.8137	5.0000	56.7306	4.8137	5.0000	56.7306
0.7493	0.2862	2.5174	5.0000	46.7851	2.5174	5.0000	46.7851
١							
					G ₁	<i>G</i> ₂	$f(\mathbf{X})$
$\overrightarrow{V_{t+1}^{t+1}} = w \overrightarrow{V_{t}^{t}} +$	$-c_{4}r_{4}\left(\overrightarrow{P_{t}^{t}}-\overrightarrow{X_{t}^{t}}\right)$	$+c_{0}r_{0}\left(\overrightarrow{G^{t}}-\overrightarrow{a}\right)$	$\vec{X}_{t}^{\vec{t}}$ \vec{v}_{t+1}	$-\overrightarrow{vt}$, $\overrightarrow{vt+1}$	4.4916	4.8943	53.7063
			X_i	$= X_i + V_i^{-1}$			

 $f(X) = x_1^2 - x_1 x_2 + x_2^2 + 2x_1 + 4x_2 + 3$

out of the bounds [-5,5]

gbest – previous iteration

<i>G</i> ₁	<i>G</i> ₂	$f(\mathbf{X})$
4.4916	4.8943	53.7063

Iteration	3
-----------	---

$$f(X) = x_1^2 - x_1x_2 + x_2^2 + 2x_1 + 4x_2 + 3$$

<i>v</i> ₁	<i>v</i> ₂	<i>x</i> ₁	<i>x</i> ₂	$f(\mathbf{X})$	<i>P</i> ₁	<i>P</i> ₂	$f(\mathbf{X})$		
0.1334	0.9843	3.6045	-1.7170	25.4710	3.1472	-4.0246	31.9645		
0.0337	0.7826	4.2731	-0.3611	30.0346	4.0579	-2.2150	32.6168		
2.0987	1.1985	-0.2784	2.4848	19.3259	-0.2784	2.4848	19.3259		
0.3221	0.2873	4.8137	5.0000	56.7306	4.8137	5.0000	56.7306		
0.7493	0.2862	2.5174	5.0000	46.7851	2.5174	5.0000	46.7851		
					G ₁	<i>G</i> ₂	f(X)		
$\overrightarrow{V_{t+1}^{t+1}} = w\overrightarrow{V_{t}^{t}} + c_{t}r_{t}\left(\overrightarrow{P_{t}^{t}} - \overrightarrow{X_{t}^{t}}\right) + c_{t}r_{t}\left(\overrightarrow{G_{t}^{t}} - \overrightarrow{X_{t}^{t}}\right) \qquad \overrightarrow{v_{t+1}^{t+1}} - \overrightarrow{v_{t}^{t}} + \overrightarrow{v_{t+1}^{t+1}}$					4.8137	5.0000	56.7306		
$X_{i}^{*} = X_{i}^{*} + V_{i}^{*} + V_{i}^{*} + V_{i}^{*} = X_{i}^{*} + V_{i}^{*} + V_{i}^{*} = X_{i}^{*} + V_{i}^{*} + V_{i$									

 $c_1 r_1$

Exploration: Search for new regions of the solution space. Aims to find the regions with potentially the best solutions

Exploitation: Explores previous promising regions of the solution space.

 $c_2 r_2$

Inertia: Makes the particle move in the same direction and velocity. The parameter W is important for balancing exploration and exploitation

 $\overline{V_i^{t+1}}$

Cognitive Component: Makes the particle to return to a previous promising position Social Component: Makes the particle to move in the direction of the best solution found so far by the team.

- Swarm size (N) number of particles in the swarm: the more particles in the swarm, the larger the initial diversity. A large swarm allows larger parts of the search space to be covered per iteration. However, more particles increase the per iteration computational complexity, and the search degrades to a parallel random search
- It has been shown in a number of empirical studies that small swarm sizes of 10 to 30 tend to provide better results – however note that the optimal swarm size is problem-dependent

• Inertia Coefficient (w) allows to define the ability of the swarm to change its direction.

$$\overrightarrow{X_{i}^{t+1}} = \overrightarrow{X_{i}^{t}} + \overrightarrow{V_{i}^{t+1}}$$

$$\overrightarrow{V_{i}^{t+1}} = \overrightarrow{W_{i}^{t}} + c_{1}r_{1}\left(\overrightarrow{P_{i}^{t}} - \overrightarrow{X_{i}^{t}}\right) + c_{2}r_{2}\left(\overrightarrow{G^{t}} - \overrightarrow{X_{i}^{t}}\right)$$

$$\overrightarrow{V_{i}^{t+1}} = \overrightarrow{W_{i}^{t}} + c_{1}r_{1}\left(\overrightarrow{P_{i}^{t}} - \overrightarrow{X_{i}^{t}}\right) + c_{2}r_{2}\left(\overrightarrow{G^{t}} - \overrightarrow{X_{i}^{t}}\right)$$

$$\overrightarrow{V_{i}^{t+1}} = \overrightarrow{V_{i}^{t}} + c_{1}r_{1}\left(\overrightarrow{P_{i}^{t}} - \overrightarrow{X_{i}^{t}}\right) + c_{2}r_{2}\left(\overrightarrow{G^{t}} - \overrightarrow{X_{i}^{t}}\right)$$

$$\overrightarrow{V_{i}^{t+1}} = \overrightarrow{V_{i}^{t}} + c_{1}r_{1}\left(\overrightarrow{P_{i}^{t}} - \overrightarrow{X_{i}^{t}}\right) + c_{2}r_{2}\left(\overrightarrow{G^{t}} - \overrightarrow{X_{i}^{t}}\right)$$

$$\overrightarrow{V_{i}^{t+1}} = \overrightarrow{V_{i}^{t}} + c_{1}r_{1}\left(\overrightarrow{P_{i}^{t}} - \overrightarrow{X_{i}^{t}}\right) + c_{2}r_{2}\left(\overrightarrow{G^{t}} - \overrightarrow{X_{i}^{t}}\right)$$

A low coefficient w facilitates the exploitation of the best solutions found so far while a high coefficient w facilitates the exploration around these solutions. Note that it is recommended to avoid w > 1 which can lead to a divergence of our particles.

- Cognitive Coefficient (*c*1) allows defining the ability of the group to be influenced by the best personal
- Social Coefficient (*c*2) allows defining the ability of the group to be influenced by the best global solution found over the iterations.

$$\overrightarrow{X_{i}^{t+1}} = \overrightarrow{X_{i}^{t}} + \overrightarrow{V_{i}^{t+1}}$$

$$\overrightarrow{V_{i}^{t+1}} = w\overrightarrow{V_{i}^{t}} + c_{1}r_{1}\left(\overrightarrow{P_{i}^{t}} - \overrightarrow{X_{i}^{t}}\right) + c_{2}r_{2}\left(\overrightarrow{G^{t}} - \overrightarrow{X_{i}^{t}}\right)$$

$$\overrightarrow{P}$$

$$\overrightarrow{P}$$

$$\overrightarrow{O}$$

$$\overrightarrow{$$

The particles of the swarm are more individualistic when *c*1 is high (exploration) . There is, therefore, no convergence because each particle is only focused on its own best solutions. In contrast, the particles of the swarm are more influenced by the others when c2 is high.

Try it yourself

http://www.netlogoweb.org/launch#http://ccl.northwestern.edu/netlogo/models/models/Sample%20Models /Computer%20Science/Particle%20Swarm%20Optimization.nlogo

Adaptive PSO

- According to the paper by M. Clerc and J. Kennedy to define a standard for Particle Swarm Optimization, the best static parameters are $w \approx 0.73$ and c1 + c2 > 4. More exactly c1 = c2 = 2.05 (obtained empirically)
- An adaptive procedure may lead to better balance between exploration and exploitation - starting with a strong c₁, strong w, and weak c₂ to increase the exploration in the first iterations. Then, the parameters are updated, towards a weak c1, weak w, and strong c2 to increase exploitation around the best region.

$$w^{t} = 0.4 \frac{(t-N)}{N^{2}} + 0.4$$
$$c_{1}^{t} = -3 \frac{t}{N} + 3.5$$
$$c_{2}^{t} = +3 \frac{t}{N} + 0.5$$

t – current iteration N – total number of iterations

Swarm Topology

- The topology of the swarm defines the subset of particles with which each particle can exchange information.
- The basic version of PSO uses the global topology as the swarm communication structure. This topology allows all particles to communicate with all the other particles, thus the whole swarm share the same best position g from a single particle.
- However, this approach might lead the swarm to be trapped into a local minimum, thus different topologies have been used to control the flow of information among particles.

Global topology: each particle is attracted to the best group particle noted gbest, and communicates with the others.

Ring topology: each particle communicates with n immediate neighbors, and tends to move towards the best position in the local neighborhood called nbest

Star topology : a central particle is connected to all others. Only this central particle adjusts its position towards the best, if this causes an improvement the information is propagated to the others. 40

Swarm Topology

Cluster-based global topology

Discrete Optimization

- PSO algorithms are applied traditionally to continuous optimization problems. Some adaptations must be made for discrete optimization problems. Two methods are often used:
 - Discrete PSO with Crossover Operators: Crossover operators are used to guide the particles towards the gbest and the lbest (cognitive and social moves); Mutation operators are often used to facilitate exploration (inertia move)
 - Binary PSO with Sigmoid Function: velocity assume real values, however a sigmoid functions is used to transform the velocities into the binary interval

PSO with Crossover Operators

Recall from Evolutionary Algorithms

PSO with Crossover Operators

Recall from Evolutionary Algorithms

PSO with Crossover Operators

PSO in Python

Nuno Antunes Ribeiro Assistant Professor

> SINGAPORE UNIVERSITY OF TECHNOLOGY AND DESIGN

TSP Instance

Generate and Process Instance Data

plt.plot(coordlct_x, coordlct_y, 'o', color='black');

Object City

 A city is an object with data concerning the corresponding coordinates and functions (methods) to compute distance between city objects

class City:	cities
<pre>definit(self, x, y): self.x = x self.y = y</pre>	[(1343, 561), (8474, 8700),
<pre>def distance(self, city): return math.hypot(self.x - city.x, self.y - city.y)</pre>	(7637, 5699), (2550, 1998), (4954, 5047), (4494, 4849),
<pre>defrepr(self): return f"({self.x}, {self.y})"</pre>	(6515, 3567), (7887, 3460), (938, 5384), (283, 6234),
<pre>cities = [] for line in range(n): cities.append(City(coordlct_x[line], coordlct_y[line]))</pre>	(8357, 6124), (4327, 4581),

```
#Compute Distance Between Cities
City.distance(cities[1],cities[2])
```

```
3115.5368718729683
```

Generate Initial Population

2-approaches to generate the initial population:

- Completely at random (good to ensure diversity)
- Greedy approach (initiate the search with good solutions)

Overview of the Code

particle.update_costs_and_pbest()

Swap Mutation – Inertia Operator

Apply n (self.no_swap) random swaps

```
swap_it=0
while swap_it<self.no_swap:
    idx = range(len(self.cities))
    i1, i2 = random.sample(idx, 2)
    new_route[i1], new_route[i2] = new_route[i2], new_route[i1]
    swap_it=swap_it+1</pre>
```

Swap Operator


```
#Cognitive Component
pbest_probability=0.5
temp_velocity = []
for i in range(len(cities)):
    if new_route[i] != particle.pbest[i]:
        swap = (i, particle.pbest.index(new_route[i]), pbest_probability)
        if random.random() <= swap[2]:
            new_route[swap[0]], new_route[swap[1]] = new_route[swap[1]], new_route[swap[0]]</pre>
```



```
#Cognitive Component
pbest_probability=0.5
temp_velocity = []
for i in range(len(cities)):
    if new_route[i] != particle.pbest[i]:
        swap = (i, particle.pbest.index(new_route[i]), pbest_probability)
        if random.random() <= swap[2]:
            new_route[swap[0]], new_route[swap[1]] = new_route[swap[1]], new_route[swap[0]]</pre>
```



```
#Cognitive Component
pbest_probability=0.5
temp_velocity = []
for i in range(len(cities)):
    if new_route[i] != particle.pbest[i]:
        swap = (i, particle.pbest.index(new_route[i]), pbest_probability)
        if random.random() <= swap[2]:
            new_route[swap[0]], new_route[swap[1]] = new_route[swap[1]], new_route[swap[0]]</pre>
```



```
#Cognitive Component
pbest_probability=0.5
temp_velocity = []
for i in range(len(cities)):
    if new_route[i] != particle.pbest[i]:
        swap = (i, particle.pbest.index(new_route[i]), pbest_probability)
        if random.random() <= swap[2]:
            new_route[swap[0]], new_route[swap[1]] = new_route[swap[1]], new_route[swap[0]]</pre>
```



```
#Cognitive Component
pbest_probability=0.5
temp_velocity = []
for i in range(len(cities)):
    if new_route[i] != particle.pbest[i]:
        swap = (i, particle.pbest.index(new_route[i]), pbest_probability)
        if random.random() <= swap[2]:
            new_route[swap[0]], new_route[swap[1]] = new_route[swap[1]], new_route[swap[0]]</pre>
```



```
#Cognitive Component
pbest_probability=0.5
temp_velocity = []
for i in range(len(cities)):
    if new_route[i] != particle.pbest[i]:
        swap = (i, particle.pbest.index(new_route[i]), pbest_probability)
        if random.random() <= swap[2]:
            new_route[swap[0]], new_route[swap[1]] = new_route[swap[1]], new_route[swap[0]]</pre>
```



```
#Cognitive Component
pbest_probability=0.5
temp_velocity = []
for i in range(len(cities)):
    if new_route[i] != particle.pbest[i]:
        swap = (i, particle.pbest.index(new_route[i]), pbest_probability)
        if random.random() <= swap[2]:
            new_route[swap[0]], new_route[swap[1]] = new_route[swap[1]], new_route[swap[0]]</pre>
```


Crossover – Social Operator

```
gbest_probability=0.5
for i in range(len(cities)):
    if new_route[i] != gbest_i[i]:
        swap = (i, new_route.index(gbest_i[i]), gbest_probability)
        if random.random() <= swap[2]:
            new_route[swap[0]], new_route[swap[1]] = new_route[swap[1]], new_route[swap[0]]
            print(swap)</pre>
```

Similar to Cognitive Operator