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Ant Colony
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▪ Ants are behaviorally unsophisticated, but collectively they can perform 
complex tasks

▪ The term "ant colony" describes not only the physical structure in which 
ants live, but also the social rules by which ants organize themselves and 
the work they do.

• Ants are continuously looking for food.

• When food is found, ants return to the colony 

• Ants lay down pheromone whenever food is found

• Paths with more pheromone are more likely to be followed by other ants

• These are often the shortest paths

• Many combinatorial problems can be considered as finding the shortest 
path on a graph.



▪ Fundamental observation: Stigmergy is a form of indirect communication 
and coordination in which agents modify the environment to pass 
information to their peers

Stigmergy
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▪ Ant nest (A) ; food source (F)

Ant Path Finding
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▪ Ant nest (A) separated from food source (F) by obstacle

Ant Path Finding
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▪ two ants (red and blue) leave the nest at the same time

Ant Path Finding
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▪ at the crossroad, one turns left and the other one right

Ant Path Finding
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▪ when moving, ants leave pheromone behind (dotted lines)

Ant Path Finding
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▪ the one with the shorter path arrives at the food source first

Ant Path Finding
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▪ when it turns back, it finds pheromone on one path and follows it

Ant Path Finding
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▪ by doing so, it leaves even more pheromone on the path

Ant Path Finding
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▪ now the second ant arrives at the food source

Ant Path Finding
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▪ when it turns back, there is pheromone on both paths – but more on the 
red one

Ant Path Finding
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▪ the pheromone on the short path gets more and more

Ant Path Finding

14



▪ while the one on the blue path evaporates

Ant Path Finding
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▪ until only the short path has pheromone. . .

Ant Path Finding

16



▪ More paths – more ants will ensure convergence to shortest path. . .

Ant Path Finding
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▪ Dorigo et. Al. (1996) have the idea to use an Ant Path simulation to solve 
optimization problems which can be represented as graphs – Ant Colony 
Optimization (ACO)

▪ Ants are agents that:

• Move along between nodes in a graph.

• They choose where to go based on pheromone strength 

• An ant’s path represents a specific  candidate solution.

• When an ant has finished a solution, pheromone is laid on its path, 
according to quality of solution.

• This pheromone trail affects the behavior of other ants by stigmergy

Ant Colony Optimization
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▪ A graph 𝐺 = (𝑉, 𝐸) consists of a set of vertices (nodes) 𝑣 ∈ 𝑉 and edges 𝑒 ∈
𝐸, with 𝐸 ⊆ 𝑉 × 𝑉

▪ ACO has been designed for problems where we want to find paths through such 
graphs 𝐺

▪ ACO has three main components:

• (simulated) ants which move through a graph along edges. The path such an 
ant took represents a solution.

• Ants leave pheromones 𝜏 on the edges they travel along. This pheromone 
helps future ants to decide which path to take. 

• Pheromone disappears over time (evaporation).

▪ Knowledge about the problem may be incorporated which tells the ant how 
interesting a given edge is (𝜂). 

▪ Together with the pheromones, 𝜂 helps the ant to decide where to go. They don’t 
change over time.

ACO on a graph
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▪ Let us assume that all nodes 𝑖 and 𝑗 ∈ 𝑉 are connected with edges, i.e., we have 
a complete graph topology

▪ An ant located in node 𝑖 in ACO chooses the next node 𝑗 where it will go 
according to:

• the amount of pheromone on the edge connecting 𝑖 and 𝑗 and

• the cost (distance) of moving from 𝑖 to 𝑗

Edge Selection - Probability
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▪ At the end of each algorithm round, “pheromone” is dispersed and the 
trails are updated (𝜂𝑖𝑗 stays constant)

Amount of Pheromone
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▪ The amount of new pheromone dispersed is proportional to the 
objective value of the path 



Solving the TSP using ACO
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▪ ACO was originally proposed to solve the traveling salesman problem (TSP)

▪ TSP is a graph problem by default

▪ We look for a path that visits all 𝑛 nodes in a graph 

▪ Basic idea

• The cities are connected with edges

• We have 𝑛 ants

• Each ant moves from one city to one of the cities it has not seen yet based 
on a given probability

• This probability depends on the pheromones on the edges and the 
distances to the cities

• Afyer all ants have completed their tout, pheromones are updated

Solving the TSP
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1. For each ant 𝑘 of the 𝑛 ants:

1. Place ant 𝑘 at a randomly chosen city/node 𝑖

2. For 𝐼 − 1 cities:

1. Choose next city 𝑗 from the set of cities 𝐼 not yet visited by the ant 
(where 𝑖 is its current location)

2. City 𝑗 has probability 𝑝𝑖𝑗 to be chosen as next city 

3. Return: tour 𝑥𝑘

2. Calculate pheromone amount Δ𝜏𝑖𝑗 to be dispersed on the edge 𝑖𝑗 given the 
fitness of tour 𝑥𝑘

3. Update pheromone value 𝜏𝑖𝑗

Repeat until termination criteria

Solving the TSP - Steps
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TSP Example
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2

3

4

5

Higher probability to select 2. Lower probability to select 3 

Pheromones Distance

In the first iteration no pheromones are in the path
Ant selection of the next city to visit depends only on the distance

Randomized greedy approach (recall: lecture 6 - nearest neighbour heuristic)

Randomly select 1 city to locate 1 ant

Iteration 1 – Ant 1



TSP Example
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3

4

5

Higher probability to select 4. Lower probability to select 2 

Pheromones Distance

In the first iteration no pheromones are in the path
Ant selection of the next city to visit depends only on the distance

Randomized greedy approach (recall: lecture 6 - nearest neighbour heuristic)

Iteration 1 – Ant 1



TSP Example
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1

2

3

4

5

Higher probability to select 3. Lower probability to select 2 

Pheromones Distance

In the first iteration no pheromones are in the path
Ant selection of the next city to visit depends only on the distance

Randomized greedy approach (recall: lecture 6 - nearest neighbour heuristic)

Iteration 1 – Ant 1



TSP Example
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5

Select 3

Pheromones Distance

In the first iteration no pheromones are in the path
Ant selection of the next city to visit depends only on the distance

Randomized greedy approach (recall: lecture 6 - nearest neighbour heuristic)

Iteration 1 – Ant 1



TSP Example
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2

3

4

5

Compute Objective Value of the tour generated (e.g. 𝒇 𝒙 = 𝟐𝟎)

Pheromones Distance

In the first iteration no pheromones are in the path
Ant selection of the next city to visit depends only on the distance

Randomized greedy approach (recall: lecture 6 - nearest neighbour heuristic)

Iteration 1 – Ant 1



TSP Example
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▪ The amount of new pheromone dispersed is 
proportional to the objective value of the path 

Compute Objective Value of the tour generated (e.g. 𝒇 𝒙 = 𝟐𝟎)

Compute the amount of pheromone to disperse in the path (e.g. 𝚫𝝉𝒊𝒋 =
𝟏

𝟐𝟎
= 𝟎. 𝟎𝟓)

Iteration 1 – Ant 1



TSP Example
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5

Higher probability to select 3. Lower probability to select 1 

Pheromones Distance

In the first iteration no pheromones are in the path
Ant selection of the next city to visit depends only on the distance

Randomized greedy approach (recall: lecture 6 - nearest neighbour heuristic)

Randomly select 1 city to locate 1 ant

Iteration 1 – Ant 2



TSP Example
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1

2

3

4

5

Higher probability to select 2. Lower probability to select 3 

Pheromones Distance

In the first iteration no pheromones are in the path
Ant selection of the next city to visit depends only on the distance

Randomized greedy approach (recall: lecture 6 - nearest neighbour heuristic)

Iteration 1 – Ant 2



TSP Example
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1

2

3

4

5

Higher probability to select 3. Lower probability to select 5 

Pheromones Distance

In the first iteration no pheromones are in the path
Ant selection of the next city to visit depends only on the distance

Randomized greedy approach (recall: lecture 6 - nearest neighbour heuristic)

Iteration 1 – Ant 2



TSP Example
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1

2

3

4

5

Pheromones Distance

In the first iteration no pheromones are in the path
Ant selection of the next city to visit depends only on the distance

Randomized greedy approach (recall: lecture 6 - nearest neighbour heuristic)

Iteration 1 – Ant 2

Select 5



TSP Example
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1

2

3

4

5

Pheromones Distance

In the first iteration no pheromones are in the path
Ant selection of the next city to visit depends only on the distance

Randomized greedy approach (recall: lecture 6 - nearest neighbour heuristic)

Iteration 1 – Ant 2

Compute Objective Value of the tour generated (e.g. 𝒇 𝒙 = 𝟏𝟓)



TSP Example
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▪ The amount of new pheromone dispersed is 
proportional to the objective value of the path 

Compute Objective Value of the tour generated (e.g. 𝒇 𝒙 = 𝟏𝟓)

Compute the amount of pheromone to disperse in the path (e.g. 𝚫𝝉𝒊𝒋 =
𝟏

𝟏𝟓
= 𝟎. 𝟎𝟕)

Iteration 1 – Ant 1

1

2

3

4

5



TSP Example
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▪ Calculate the total pheromone amount in each edge

෍

𝒂𝒏𝒕 𝒌

𝚫𝝉𝒊𝒋
𝒌 ∀𝒊, 𝒋

1

2

3

4

5

1

2

3

4

5

+ =

1

2

3

4

5

End of Iteration 1



TSP Example
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2
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4
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Higher probability to select 2. Lower probability to select 4 

Pheromones Distance

In the second iteration the decision depends on the amount of 
pheromone and the distance of the edges

Randomly select 1 city to locate 1 ant

Iteration 1 – Ant 1



TSP Example
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1

2

3

4

5

Higher probability to select 4. Lower probability to select 1 

Pheromones Distance

In the first iteration no pheromones are in the path
Ant selection of the next city to visit depends only on the distance

Randomized greedy approach (recall: lecture 6 - nearest neighbour heuristic)

Randomly select 1 city to locate 1 ant

Iteration 1 – Ant 1



TSP Example
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2
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4

5

Pheromones Distance

Randomly select 1 city to locate 1 ant

Iteration 1 – Ant 1

REPEAT…



TSP Example
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Solving the Job-shop Scheduling using ACO
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▪ A Gant chart can be represented as a disjunctive graph, which can be 
used to solve the Job-Shop Scheduling Problem using Ant Colony 
Optimization 

JSP Example
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Job
(Machine,
Duration)

(Machine,
Duration)

(Machine,
Duration)

0 (0,3) (1,2) (2,2)

1 (0,2) (2,1) (1,4)

2 (1,4) (2,3)



▪ All ants are initially in 𝑢0 and are then left free to identify a permutation of the 
remaining nodes. 

▪ In order to have a feasible permutation it is necessary to constrain the set of 
reachable nodes in any. 

▪ Let 𝐺 denote the set of all the nodes still to be visited and 𝑆 the set of the nodes 
whose predecessors have already been visited.

JSP Example
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𝒖𝟎

𝑺𝟏

𝑺𝟐

𝑺𝟑



▪ All ants are initially in 𝑢0 and are then left free to identify a permutation of the 
remaining nodes. 

▪ In order to have a feasible permutation it is necessary to constrain the set of 
reachable nodes in any. 

▪ Let 𝐺 denote the set of all the nodes still to be visited and 𝑆 the set of the nodes 
whose predecessors have already been visited.

JSP Example
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𝒖𝟎

𝑺𝟏

𝑺𝟐

𝑺𝟑

Seq: J2T1; 



▪ All ants are initially in 𝑢0 and are then left free to identify a permutation of the 
remaining nodes. 

▪ In order to have a feasible permutation it is necessary to constrain the set of 
reachable nodes in any. 

▪ Let 𝐺 denote the set of all the nodes still to be visited and 𝑆 the set of the nodes 
whose predecessors have already been visited.

JSP Example
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𝒖𝟎

𝑺𝟏

𝑺𝟐

𝑺𝟑

Seq: J2T1; J1T0; 



▪ All ants are initially in 𝑢0 and are then left free to identify a permutation of the 
remaining nodes. 

▪ In order to have a feasible permutation it is necessary to constrain the set of 
reachable nodes in any. 

▪ Let 𝐺 denote the set of all the nodes still to be visited and 𝑆 the set of the nodes 
whose predecessors have already been visited.

JSP Example
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𝒖𝟎

𝑺𝟏

𝑺𝟐

𝑺𝟑

Seq: J2T1; J1T0; J1T1; 



▪ All ants are initially in 𝑢0 and are then left free to identify a permutation of the 
remaining nodes. 

▪ In order to have a feasible permutation it is necessary to constrain the set of 
reachable nodes in any. 

▪ Let 𝐺 denote the set of all the nodes still to be visited and 𝑆 the set of the nodes 
whose predecessors have already been visited.

JSP Example
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𝒖𝟎

𝑺𝟏

𝑺𝟐

Seq: J2T1; J1T0; J1T1; J1T2; 



▪ All ants are initially in 𝑢0 and are then left free to identify a permutation of the 
remaining nodes. 

▪ In order to have a feasible permutation it is necessary to constrain the set of 
reachable nodes in any. 

▪ Let 𝐺 denote the set of all the nodes still to be visited and 𝑆 the set of the nodes 
whose predecessors have already been visited.

JSP Example
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𝒖𝟎

𝑺𝟏

Seq: J2T1; J1T0; J1T1; J1T2; J2T2; 



▪ All ants are initially in 𝑢0 and are then left free to identify a permutation of the 
remaining nodes. 

▪ In order to have a feasible permutation it is necessary to constrain the set of 
reachable nodes in any. 

▪ Let 𝐺 denote the set of all the nodes still to be visited and 𝑆 the set of the nodes 
whose predecessors have already been visited.

JSP Example
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𝒖𝟎

𝑺𝟏

Seq: J2T1; J1T0; J1T1; J1T2; J2T2; J0T0; 



▪ All ants are initially in 𝑢0 and are then left free to identify a permutation of the 
remaining nodes. 

▪ In order to have a feasible permutation it is necessary to constrain the set of 
reachable nodes in any. 

▪ Let 𝐺 denote the set of all the nodes still to be visited and 𝑆 the set of the nodes 
whose predecessors have already been visited.

JSP Example
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𝒖𝟎

𝑺𝟏

Seq: J2T1; J1T0; J1T1; J1T2; J2T2; J0T0; J0T1; 



▪ All ants are initially in 𝑢0 and are then left free to identify a permutation of the 
remaining nodes. 

▪ In order to have a feasible permutation it is necessary to constrain the set of 
reachable nodes in any. 

▪ Let 𝐺 denote the set of all the nodes still to be visited and 𝑆 the set of the nodes 
whose predecessors have already been visited.

JSP Example
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𝒖𝟎
𝑺𝟏

Seq: J2T1; J1T0; J1T1; J1T2; J2T2; J0T0; J0T1; J0T2



▪ All ants are initially in 𝑢0 and are then left free to identify a permutation of the 
remaining nodes. 

▪ In order to have a feasible permutation it is necessary to constrain the set of 
reachable nodes in any. 

▪ Let 𝐺 denote the set of all the nodes still to be visited and 𝑆 the set of the nodes 
whose predecessors have already been visited.

JSP Example
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𝒖𝟎
𝑺𝟏

Seq: J2T1; J1T0; J1T1; J1T2; J2T2; J0T0; J0T1; J0T2



▪ Optimal critical path is given by the longest 
weighted path from s to t

Recall: Critical Path (Slide 59 – Lec 4) 

54

Machine 0 Machine 1 Machine 2

1 0 2 1 0 1 2 0

4

4

2
2

Critical Path Length 
=4+4+2+2=12



▪ How to compute 𝜂𝑖𝑗?

• Hypothesis 1: do not consider 𝜂𝑖𝑗
• Hypothesis 2: give more probability to operations with the longest 

(remaining) time

JSP Example

55



JSP Example
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𝒖𝟎

𝑺𝟏

𝑺𝟐

𝑺𝟑

▪ Hypothesis 2: give more probability to operations with the longest 
(remaining) time

𝜼𝒔𝟏 = 𝟑 + 𝟐 + 𝟐 = 𝟕 𝜂𝑠2 = 4 𝜂𝑠3 = 3



JSP Example
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𝒖𝟎

𝑺𝟏

𝑺𝟐

𝑺𝟑

▪ Hypothesis 2: give more probability to operations with the longest 
(remaining) time

𝜼𝒔𝟏 = 𝟑 + 𝟐 + 𝟐 = 𝟕 𝜼𝒔𝟐 = 𝟒 𝜼𝒔𝟑 = 𝟑



Solving the Knapsack Problem using ACO
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Knapsack Problem Example
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𝑤𝑖 𝑓𝑖 𝑓𝑖/𝑤𝑖

Obj 1 2 5 2.5

Obj 2 3.75 7 1.87

Obj 3 2.5 3 1.2

Obj 4 3 5 1.67

Obj 5 1 4 4

Obj 6 1.5 8 5.33

cap 4

Higher probability to select 6. Lower probability to select 3
Object 2 cannot be selected 

Pheromones Ratio (profit/weight)

In the first iteration no pheromones are in the path
Ant selection depends only on the ratio (profit/weigh)

Weight=1

Selecting Obj 2 would 
exceed capacity

Obj1 Obj2

Obj3

Obj4Obj5

Obj6

1st Iteration
1st Ant

Profit=4



Knapsack Problem Example
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𝑤𝑖 𝑓𝑖 𝑓𝑖/𝑤𝑖

Obj 1 2 5 2.5

Obj 2 3.75 7 1.87

Obj 3 2.5 3 1.2

Obj 4 3 5 1.67

Obj 5 1 4 4

Obj 6 1.5 8 5.33

cap 4

Obj1 Obj2

Obj3

Obj4Obj5

Obj6

No more objects can be selected – end of the first iteration for ant 1

Pheromones Ratio (profit/weight)

In the first iteration no pheromones are in the path
Ant selection depends only on the ratio (profit/weigh)

Weight=3

Selecting Obj 2 would 
exceed capacity

1st Iteration
1st Ant

Profit=9



Knapsack Problem Example
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𝑤𝑖 𝑓𝑖 𝑓𝑖/𝑤𝑖

Obj 1 2 5 2.5

Obj 2 3.75 7 1.87

Obj 3 2.5 3 1.2

Obj 4 3 5 1.67

Obj 5 1 4 4

Obj 6 1.5 8 5.33

cap 4

Obj1 Obj2

Obj3

Obj4Obj5

Obj6

Weight=3

Selecting Obj 2 would 
exceed capacity

1st Iteration
1st Ant

Profit=9

Compute Objective Value of the objects 
selected (e.g. 𝒇 𝒙 = 𝟗)

Compute the amount of pheromone to disperse 

in the path (e.g. 𝚫𝝉𝒊𝒋 = 𝟏 −
𝟏

𝟗
= 𝟎. 𝟖𝟖)

1 −
1

𝑓(𝑥)



Knapsack Problem Example
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𝑤𝑖 𝑓𝑖 𝑓𝑖/𝑤𝑖

Obj 1 2 5 2.5

Obj 2 3.75 7 1.87

Obj 3 2.5 3 1.2

Obj 4 3 5 1.67

Obj 5 1 4 4

Obj 6 1.5 8 5.33

cap 4

Higher probability to select 6. Lower probability to select 5
Object 2 cannot be selected 

Pheromones Ratio (profit/weight)

In the first iteration no pheromones are in the path
Ant selection depends only on the ratio (profit/weigh)

Weight=2.5

Obj1 Obj2

Obj3

Obj4Obj5

Obj6

1st Iteration
2nd Ant

Profit=3



Knapsack Problem Example
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𝑤𝑖 𝑓𝑖 𝑓𝑖/𝑤𝑖

Obj 1 2 5 2.5

Obj 2 3.75 7 1.87

Obj 3 2.5 3 1.2

Obj 4 3 5 1.67

Obj 5 1 4 4

Obj 6 1.5 8 5.33

cap 4

Pheromones Ratio (profit/weight)

In the first iteration no pheromones are in the path
Ant selection depends only on the ratio (profit/weigh)

Weight=3.5

Obj1 Obj2

Obj3

Obj4Obj5

Obj6

1st Iteration
2nd Ant

No more objects can be selected – end of the first iteration for ant 2Profit=7



Knapsack Problem Example
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𝑤𝑖 𝑓𝑖 𝑓𝑖/𝑤𝑖

Obj 1 2 5 2.5

Obj 2 3.75 7 1.87

Obj 3 2.5 3 1.2

Obj 4 3 5 1.67

Obj 5 1 4 4

Obj 6 1.5 8 5.33

cap 4

Compute Objective Value of the objects 
selected (e.g. 𝒇 𝒙 = 𝟕)

Compute the amount of pheromone to disperse 

in the path (e.g. 𝚫𝝉𝒊𝒋 =
𝟏

𝟕
= 𝟎. 𝟖𝟓)

Weight=3.5

Obj1 Obj2

Obj3

Obj4Obj5

Obj6

1st Iteration
2nd Ant

Profit=7

1 −
1

𝑓(𝑥)



TSP Example

65

▪ Calculate the total pheromone amount in each edge

෍

𝒂𝒏𝒕 𝒌

𝚫𝝉𝒊𝒋
𝒌 ∀𝒊, 𝒋

End of Iteration 1

Obj1 Obj2

Obj3

Obj4Obj5

Obj6

Obj1 Obj2

Obj3

Obj4Obj5

Obj60.88

0.85

Obj1 Obj2

Obj3

Obj4Obj5

Obj6

0.85

0.88

+ =

Repeat, now with pheromones

Ant Colony is essentially a randomized greedy 
algorithm with memory – the ant’s moves are the 

greedy steps, the amount of pheromone is the memory


