
Artificial Bee Colony

1

Nuno Antunes Ribeiro

Assistant Professor

▪ In swarm behavior different tasks are performed
simultaneously by specialized individuals – division
of labor

▪ Honey bees are organized in 3 groups:

• Employed Bees

• Onlookers

• Scouts

▪ Employed Bees search food around their assigned
food sources.

▪ Onlooker Bees evaluate the nectar information
taken from all employed bees and then choose a
food source to further investigate

▪ Scout bees randomly search for new food sources to
be in investigated – Scout bees are employed bees
who's their assigned food source has been
abandoned (due to low quantity of nectar).

Behavior of Honey Bee Swarm

2

Dancing Area

Employed Bees

Onlooker Bees

Food Source

▪ The exchange of information among bees is the most important
occurrence in the formation of the collective knowledge

▪ Communication among bees related to quality of food sources (amount of
nectar + distance) occurs in the dancing area

▪ The related dance is called waggle dance

• Direction (angle of the dance)

• Distance (duration of the dance)

• Quality (frequency of the dance)

Exchange of Information

3

▪ Step 1 – Generate initial population of honey bees (usually 50% of
employed bees and 50% of onlooker bees) – each employed bee is
assigned a random food source (random solution)

▪ Step 2 – Employed bees produce modifications on the current food
source location (solution). Provided that the nectar amount (fitness) of
the new positions is higher than that of the previous one, the bee
memorizes the new position (solution) and forgets the old one

Artificial Honey Bee Algorithm – Search Steps

4

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 - new location selected by bee 𝑖

𝑋𝑖 - old location of bee 𝑖

𝑋𝑝 - random location among all the bees

𝜙 – random number U(-1,1)

▪ Step 3 – After all employed bees complete the search process, they
share the nectar information (fitness) of the food sources with the
onlooker bees. Onlooker bees evaluate the nectar information taken
from all employed bees and chooses a food source with a probability
related to its nectar amount (fitness).

▪ Step 4 – As in the case of the employed bees, it produces a modification
on the selected food source location (solution).). Provided that the
nectar amount (fitness) of the new positions are higher than that of the
previous one, the bee memorizes the new position (solution) and forgets
the old one.

Artificial Honey Bee Algorithm – Search Steps

5

𝑝𝑖 =
𝑓𝑖
σ𝑓𝑖

𝑖𝑓 𝑟𝑛𝑑 > 𝑝𝑖 , 𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑝𝑖 - probability of selecting food source from bee 𝑖

𝑓𝑖 - amount of nectar (fitness) of food source from bee 𝑖

𝑟𝑛𝑑 - random number U(0,1)

▪ Step 5 – Food sources that a position cannot be improved further though
a predetermined number of cycles, which is called limit, are abandoned.
The corresponding employed bee becomes a scout bee. A new food
source is randomly selected

▪ Iterate steps 2 to 5 until termination criterion satisfied

Artificial Honey Bee Algorithm – Search Steps

6

𝑙𝑖𝑚𝑖𝑡 =
𝑁

2
× 𝐷

𝑁 – number of bees in the populations
𝐷 – Dimension of the problem (i.e. number of decision variables for each bee)

Limit is typically set as

ABC - Example

7

▪ Objective: maximize 𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

▪ Where: −5 ≤ 𝑥1, 𝑥2 ≤ 5

▪ Population size = 10

▪ No. of employed bees = 5

▪ No. of onlooker bees = 5

▪ Limit = 1

▪ Iteration 1

ABC - Example

8

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -2.2150

-3.7301 0.4688

4.1338 4.5751

1.3236 4.6489

𝑓(X)

31.9645

32.6168

13.2971

48.6753

41.4537

𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3
Food Source

𝑓′(X)

0.0303

0.0297

0.0699

0.0201

0.0236

𝑓′ 𝑋 = ൞

1

(1 + 𝑓)
; 𝑓 ≥ 0

1 + 𝑓 ; 𝑓 < 0

maximize minimize

𝑡𝑟𝑖𝑎𝑙

0

0

0

0

0

▪ Iteration 1

ABC - Example

9

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -2.2150

-3.7301 0.4688

4.1338 4.5751

1.3236 4.6489

𝑓(X)

31.9645

32.6168

13.2971

48.6753

41.4537

𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

𝑓′(X)

0.0303

0.0297

0.0699

0.0201

0.0236

𝑡𝑟𝑖𝑎𝑙

0

0

0

0

0

𝑥1 𝑥2 𝑓(X) 𝑓′(X) 𝑡𝑟𝑖𝑎𝑙

▪ Iteration 2

𝑓′ 𝑋 = ൞

1

(1 + 𝑓)
; 𝑓 ≥ 0

1 + 𝑓 ; 𝑓 < 0

Employed bee 1
Select random variable – let it be 1
Select random partner – let it be 4
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤

= 3.1472 + 0.71 3.1472 − 4.1338
= 2.4467

𝑋𝑖
𝑛𝑒𝑤 = 2.4467,−4.0246

𝑓(𝑋𝑖) = 23.8259

𝑓′ 𝑋𝑖 = 0.0403 > 0.0303
Worse location than before, thus
preserve previous location

Increase trial to 1.

▪ Iteration 1

ABC - Example

10

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -2.2150

-3.7301 0.4688

4.1338 4.5751

1.3236 4.6489

𝑓(X)

31.9645

32.6168

13.2971

48.6753

41.4537

𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

𝑓′(X)

0.0303

0.0297

0.0699

0.0201

0.0236

𝑡𝑟𝑖𝑎𝑙

0

0

0

0

0

𝑥1 𝑥2

3.1472 -4.0246

𝑓(X)

31.9645

𝑓′(X)

0.0303

𝑡𝑟𝑖𝑎𝑙

1

▪ Iteration 2

𝑓′ 𝑋 = ൞

1

(1 + 𝑓)
; 𝑓 ≥ 0

1 + 𝑓 ; 𝑓 < 0

Employed bee 1
Select random variable – let it be 1
Select random partner – let it be 4
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤

= 3.1472 + 0.71 3.1472 − 4.1338
= 2.4467

𝑋𝑖
𝑛𝑒𝑤 = 2.4467,−4.0246

𝑓(𝑋𝑖) = 23.8259

𝑓′ 𝑋𝑖 = 0.0403 > 0.0303
Worse location than before, thus
preserve previous location

Increase trial to 1.

▪ Iteration 1

ABC - Example

11

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -2.2150

-3.7301 0.4688

4.1338 4.5751

1.3236 4.6489

𝑓(X)

31.9645

32.6168

13.2971

48.6753

41.4537

𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

𝑓′(X)

0.0303

0.0297

0.0699

0.0201

0.0236

𝑡𝑟𝑖𝑎𝑙

0

0

0

0

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

𝑓(X)

31.9645

37.0428

𝑓′(X)

0.0303

0.0263

𝑡𝑟𝑖𝑎𝑙

1

0

▪ Iteration 2

𝑓′ 𝑋 = ൞

1

(1 + 𝑓)
; 𝑓 ≥ 0

1 + 𝑓 ; 𝑓 < 0

Employed bee 2
Select random variable – let it be 2
Select random partner – let it be 3
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤

= −2.2150 + 0.31 −2.150 − 0.4688
= −3.0470

𝑋𝑖
𝑛𝑒𝑤 = 4.0579,−3.0470

𝑓(𝑋𝑖) = 37.0428

𝑓′ 𝑋𝑖 = 0.0263 < 0.0297
Better location than before, thus
update previous location

keep trial to 0.

▪ Iteration 1

ABC - Example

12

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -2.2150

-3.7301 0.4688

4.1338 4.5751

1.3236 4.6489

𝑓(X)

31.9645

32.6168

13.2971

48.6753

41.4537

𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

𝑓′(X)

0.0303

0.0297

0.0699

0.0201

0.0236

𝑡𝑟𝑖𝑎𝑙

0

0

0

0

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

▪ Iteration 2

𝑓′ 𝑋 = ൞

1

(1 + 𝑓)
; 𝑓 ≥ 0

1 + 𝑓 ; 𝑓 < 0

Employed bees updates

Information is shared with the
onlooker bees

▪ Iteration 2

ABC - Example

13

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2 𝑓(X) 𝑓′(X) 𝑡𝑟𝑖𝑎𝑙

Employed bees phase

onlooker bees phase

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 1
rnd= 0.26 >0.2415

Food source 1 is
selected by the
first onlooker bee

Select random variable – let it be 2
Select random partner – let it be 3
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 = 3.1472,0.6571

𝑓(𝑋1) = 20.1914

𝑓′ 𝑋1 = 0.0472 > 0.0303
Worse location than before, thus
increase trial to 2.

▪ Iteration 2

ABC - Example

14

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

𝑓(X)

31.9645

𝑓′(X)

0.0303

𝑡𝑟𝑖𝑎𝑙

2

Employed bees phase

onlooker bees phase

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 1
rnd= 0.26 > 0.2415

Food source 1 is
selected by the
first onlooker bee

Select random variable – let it be 2
Select random partner – let it be 3
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 = 3.1472,0.6571

𝑓(𝑋1) = 20.1914

𝑓′ 𝑋1 = 0.0472 > 0.0303
Worse location than before, thus
increase trial to 2.

▪ Iteration 2

ABC - Example

15

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

𝑓(X)

31.9645

37.0428

𝑓′(X)

0.0303

0.0263

𝑡𝑟𝑖𝑎𝑙

2

0

Employed bees phase

onlooker bees phase

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 2
rnd= 0.10 < 0.2415

Food source 2 is
not selected by the
second onlooker
bee

▪ Iteration 2

ABC - Example

16

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-5.0000 2.7604

𝑓(X)

31.9645

37.0428

50.4639

𝑓′(X)

0.0303

0.0263

0.0194

𝑡𝑟𝑖𝑎𝑙

2

0

0

Employed bees phase

onlooker bees phase

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 2
rnd= 0.45 > 0.2020

Food source 3 is
selected by the
second onlooker
bee

Select random variable – let it be 1
Select random partner – let it be 2
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 = −5.0000,2.7604

𝑓(𝑋1) = 50.4639

𝑓′ 𝑋1 = 0.0194 < 0.0254
Better location than before, thus
update location

▪ Iteration 2

ABC - Example

17

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-5.0000 2.7604

4.1338 4.5751

𝑓(X)

31.9645

37.0428

50.4639

48.6753

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

Employed bees phase

onlooker bees phase

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 3
rnd= 0.07 < 0.1602

Food source 4 is
not selected by the
third onlooker bee

▪ Iteration 2

ABC - Example

18

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-5.0000 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

50.4639

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

Employed bees phase

onlooker bees phase

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 3
rnd= 0.14 < 0.1871

Food source 5 is
not selected by the
third onlooker bee

▪ Iteration 2

ABC - Example

19

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-5.0000 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

50.4639

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

Employed bees phase

onlooker bees phase

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 3
rnd= 0.65 > 0. 2415

Food source 1 is
selected by the
third onlooker bee

Select random variable – let it be 2
Select random partner – let it be 2
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 = 3.1472,−3.5847

𝑓(𝑋1) = 28.9921

𝑓′ 𝑋1 = 0.0333 > 0.0303
Worse location than before, thus
increase trial to 3

▪ Iteration 2

ABC - Example

20

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

5.0000 -3.0470

-5.0000 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

50.3311

50.4639

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

Employed bees phase

onlooker bees phase

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 4
rnd= 0.83 > 0. 2092

Food source 2 is
selected by the
fourth onlooker
bee

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 = 5.000, −3.0470

𝑓(𝑋1) = 50.3311

𝑓′ 𝑋1 = 0.0195 < 0.0263
Worse location than before, thus
increase trial to 3

Select random variable – let it be 1
Select random partner – let it be 5
Create new food location (solution)

▪ Iteration 2

ABC - Example

21

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

5.0000 -3.0470

-5.0000 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

50.3311

50.4639

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

Employed bees phase

onlooker bees phase

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 5
rnd= 0.15 < 0. 2020

Food source 3 is
not selected by the
fifth onlooker bee

▪ Iteration 2

ABC - Example

22

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

5.0000 -3.0470

-5.0000 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

50.3311

50.4639

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

Employed bees phase

onlooker bees phase

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 5
rnd= 0.01 < 0. 1602

Food source 4 is
not selected by the
fifth onlooker bee

▪ Iteration 2

ABC - Example

23

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

5.0000 -3.0470

-5.0000 2.7604

4.1338 4.5751

1.6327 5.0000

𝑓(X)

31.9645

50.3311

50.4639

48.6753

45.7676

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0214

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

Employed bees phase

onlooker bees phase

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 5
rnd= 0.19 > 0.1871

Food source 5 is
selected by the
fifth onlooker bee

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 = 1.6327, 5.0000

𝑓(𝑋1) = 45.7676

𝑓′ 𝑋1 = 0.0214 > 0.0235
Better location than before, thus
update location

Select random variable – let it be 2
Select random partner – let it be 1
Create new food location (solution)

▪ Iteration 2

ABC - Example

24

𝑥1 𝑥2

3.1472 -4.0246

5.0000 -3.0470

-5.0000 2.7604

4.1338 4.5751

1.6327 5.0000

𝑓(X)

31.9645

50.3311

50.4639

48.6753

45.7676

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0214

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

𝑥1 𝑥2

3.6045 -1.7170

5.0000 -3.0470

-5.0000 2.7604

4.1338 4.5751

1.6327 5.0000

𝑓(X)

25.4710

50.3311

50.4639

48.6753

45.7676

𝑓′(X)

0.0378

0.0263

0.0194

0.0201

0.0214

𝑡𝑟𝑖𝑎𝑙

0

0

0

1

0

onlooker bees phase

scout bees phase

𝑡𝑟𝑖𝑎𝑙 > 𝑙𝑖𝑚𝑖𝑡

true

false

false

false

false

Employed bee 1 becomes a
scout bee
New solution is generated
completely at random
We accept the new solution
even if is worse

Cuckoo Search Algorithm

25

Nuno Antunes Ribeiro

Assistant Professor

▪ The Cuckoo Search Algorithm is inspired by the
obligate brood parasitism of some cuckoo
species by laying their eggs in the nests of host
birds.

▪ Some cuckoos have evolved in such a way that
female parasitic cuckoos can imitate the
colors and patterns of the eggs of a few
chosen host species.

▪ This reduces the probability of the eggs
being abandoned and, therefore, increases
their reproductivity .

▪ If host birds discover the eggs are not their
own, they will either throw them away or simply
abandon their nests and build new ones

Behavior of Cuckoo breeding

26

▪ Usually, the cuckoo eggs hatch slightly earlier
than their host eggs.

▪ Once the first cuckoo chick is hatched, his first
instinct action is to evict the host eggs by
blindly propelling the eggs out of the nest.

▪ This action results in increasing the cuckoo chick’s
share of food provided by its host bird .

▪ Moreover, studies show that a cuckoo chick can
imitate the call of host chicks to gain access to
more feeding opportunity.

Behavior of Cuckoo breeding

27

▪ Each egg in a nest represents a solution, and a cuckoo egg
represents a new solution.

▪ In the simplest form, each nest has only one egg, but
the algorithm can be extended to more complicated cases
in which each nest has multiple eggs representing a set of
solutions

▪ The CS algorithm is based on three rules:

1. Each cuckoo lays one egg at a time in a randomly
chosen nest

2. The best eggs (solutions) in a nest will carry over to
the next generations

3. The number of nests is fixed, and a host can discover
an alien egg with probability 𝑝𝑎 𝜖 [0,1]. In this case, the
host bird can either throw the egg away or abandon
the nest to build a completely new nest.

Cuckoo Search Algorithm

28

Nest 2

Nest n

…

Nest 1

S1

S2

Sn

▪ Step 1 - Generate initial population of n
host nests

▪ Step 2 – Lay a new egg in the nest n

▪ Step 3 – Compare the fitness of cuckoo’s
egg with the fitness of the host egg

▪ Step 4 – If the fitness of cuckoo’s egg is
better than host egg, replace the egg in
nest 𝑘 by cuckoo’s egg

▪ Step 5 – If host bird notice it 𝑝𝑎 𝜖 [0,1]. ,
the nest is abandoned and new random
one is built.

▪ Iterate steps 2 to 5 until termination
criterion satisfied

Cuckoo Search Algorithm – Search Steps

29

…

Nest 1

S1

Nest 1

>

S1

CS - Example

30

▪ Objective: minimize 𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

▪ Where: −5 ≤ 𝑥1, 𝑥2 ≤ 5

▪ Population size = 5

▪ Probability of abandoning the nest: 𝑝𝑎 = 0.9

▪ Iteration 1

CS - Example

31

𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

𝐺1 𝐺2

1.0005 -2.6027

Position
randomly generated

𝑈(0,1)

𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

𝑓(X)

4.9692

Nest

▪ Original Cuckoo Search proposes a random
perturbation relying on levy flights instead of
random walks.

Levy Flights

32

𝑋𝑛𝑒𝑤 = 𝑋 + 𝑟𝑎𝑛𝑑𝑛 × 𝐶

𝐶 = 0.01 × 𝑆 × (𝑋 − 𝑔𝑏𝑒𝑠𝑡)

𝑋 – current solution

𝑁(0,1) – random number generated using a normal distribution

𝑆 – random step generated by a symmetric Levy distribution

𝑠 =
𝑢

𝑣 1/𝛽

𝛽 =1.5

𝑢 = 𝑋 ∗ 𝑁(0,1) ∗ 𝜎𝑢

𝑣 = 𝑋 ∗ 𝑁(0,1)

Levy Flights

33

Random Walks Levy Walks

▪ In a food-scarce environment, it is a waste of time and energy to always move a short distance

from the previous position.

▪ It turns out that a better strategy is to occasionally move a long distance. That puts the animal

in a new location, which it can explore by moving small distances again.

▪ This behavior has been observed in many animals that hunt at sea, including albatross,

sharks, turtles, penguins, and tuna

CS - Example

34

▪ Objective: minimize 𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

▪ Where: −5 ≤ 𝑥1, 𝑥2 ≤ 5

▪ Population size = 5

▪ Probability of abandoning the nest: 𝑝𝑎 = 0.9

▪ 𝛽 = 1.5

▪ 𝜎𝑢 = 0.7

▪ Iteration 1

CS - Example

35

𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

𝐺1 𝐺2

1.0005 -2.6027

𝑓(X)

4.9692

Nest
▪ Iteration 2

𝑥1 𝑥2

-4.4946 3.9554

𝑓(X)

63.4556

Nest

𝑢 = 𝑥𝑖 ∗ 𝑁(0,1) ∗ 𝜎𝑢 = [−0.7180, −1.0874]

𝑣 = 𝑥𝑖 ∗ 𝑁(0,1) = [−0.2260, −0.5517]

𝑆 =
𝑢

𝑣 1/𝛽
= [−1.9353, −1.6166]

𝑥𝑖 = 𝑥𝑖 + 𝑁(0,1) × 0.01 × 𝑆 × (𝑥𝑖 − 𝑔𝑏𝑒𝑠𝑡)

𝑥1 = −4.5861 + 0.8468 × 0.01 × (−1.9353) × (−4.5861 − 1.0005)

𝑥2 = 3.9930 + 0.3531 × 0.01 × (−1.6166) × (3.9930 + 2.6027)

▪ Iteration 1

CS - Example

36

𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

𝐺1 𝐺2

1.0005 -2.6027

𝑓(X)

4.9692

Nest
▪ Iteration 2

𝑥1 𝑥2

-4.4946 3.9554

-0.0326 4.2200

-0.8218 4.3220

1.7398 2.5688

1.0005 -2.6027

𝑓(X)

63.4556

37.7618

41.5516

21.9115

4.9692

Nest

▪ Iteration 1

CS - Example

37

𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

𝐺1 𝐺2

1.0005 -2.6027

𝑓(X)

4.9692

Nest
▪ Iteration 2

𝑥1 𝑥2

-4.4946 3.9554

-0.0326 4.2200

-0.8218 4.3220

1.7398 2.5688

1.0005 -2.6027

𝑓(X)

63.4556

37.7618

41.5516

21.9115

4.9692

Nest

𝑥1 𝑥2

-4.4946 3.9554

-0.0215 4.1747

-0.8218 4.3220

1.7398 2.5688

1.0005 -2.6027

𝑓(X)

63.4556

37.1741

41.5516

21.9115

4.9692

𝑓(X)

63.4556

37.7618

41.5516

21.9115

4.9692

𝑓(X)

63.4556

37.1741

41.5516

21.9115

4.9692

▪ Iteration 1

CS - Example

38

𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

𝐺1 𝐺2

-2.5151 -0.4597

𝑓(X)

1.5122

Nest
▪ Iteration 2

𝑥1 𝑥2

-4.4946 3.9554

-0.0326 4.2200

-0.8218 4.3220

1.7398 2.5688

1.0005 -2.6027

Nest

𝑥1 𝑥2

-4.4946 3.9554

-0.0215 4.1747

-0.8218 4.3220

1.7398 2.5688

1.0005 -2.6027

𝑟𝑎𝑛𝑑𝑜𝑚
𝑛𝑢𝑚𝑏𝑒𝑟

0.97

0.14

0.24

𝒓 < 𝟎. 𝟐𝟓 ?

𝑥1 𝑥2

-4.4946 3.9554

-0.0215 4.1747

-0.2781 1.0026

-2.5151 -0.4597

1.0005 -2.6027

𝑓(X)

63.4556

37.1741

7.8155

1.5122

4.9692

Recall: Mutation Operator in DE (Lec. 12)

39

▪ Original CS uses the mutation operator from differential evolution (see lecture 12 –
slide 60) to randomly generate a new solution when a cuckoo rejects a solution. This
ensures that the solution generated is not completely random.

𝑉𝑖𝐺 = 𝑋𝑟1𝑖𝐺 + 𝜆 𝑋𝑟2𝑖𝐺− 𝑋𝑟3𝑖𝐺
𝜆 is a factor from 0 to 2

https://matteding.github.io/2019/04/
17/differential-evolution/

https://matteding.github.io/2019/04/17/differential-evolution/

Grey Wolf Optimizer

40

Nuno Antunes Ribeiro

Assistant Professor

Social Hierarchy of Grey Wolf

41

▪ Grey wolfs are organized in 4 groups:
• Alpha, or the leaders, are responsible for making decisions about hunting, sleeping

place, time to wake, etc. Interestingly the alpha is not necessarily the strongest member
of the pack but the best in terms of managing the pack.

• Beta, or the advisors, are subordinate wolves that help the alpha in decision-making or
other pack activities. The beta wolf should respect the alpha, but commands the other
lower-level wolves. Beta wolves are often the best candidates to be the alpha when this
passes away or becomes old.

• Delta, or the subordinate, often comprise wolves from different categories – scouts,
sentinels, hunters, caretakers, elders. Scouts are responsible for watching the
boundaries of the territory and warning the pack in case of any danger. Sentinels
protect and guarantee safety of the pack. Elders are the experienced wolves who used
to be alpha or beta. Hunters help the hunters and betas hunting prey. Caretakers are
responsible for caring for the weak, ill, and wounded wolves

• Omega, or the scapegoat, the lowest ranking member of the pack. The omega lives on
the outskirts of the pack, usually eating last. The omega serves as both a stress-
reliever and instigator of play. They may seem not important, but the whole pack fights
when there is no omega.\

▪ The hunting operation is usually
guided by the alpha.

▪ The beta and delta might
participate in hunting occasionally

▪ The main phases of grey wolf
hunting are as follows:

• Tracking, chasing and
approaching the prey

• Pursuing, encircling, and
harassing the prey until it stops
moving

• Attack towards the prey

Hunting Mechanism of Grey Wolves

42

▪ In the grey wolf optimizer
(GWO), we consider the fittest
solution as the alpha α, and the
second and the third fittest
solutions are named beta 𝛽 and
delta 𝛿, respectively.

▪ The rest of the solutions are
considered omega 𝜔.

▪ The 𝝎 solutions are guided by
the 𝜶,𝜷 and 𝜹

Grey Wolf Optimizer

43

▪ During the hunting, the grey wolves encircle the prey.

▪ The mathematical model of the encircling behaviour is presented as follows

▪ Where 𝑡 is the current iteration, 𝑋𝑝 is the position vector of the “prey”, and 𝑋 is the
position vector of a omega grey wolf. 𝐴 and 𝐶 are coefficient vectors calculated as
follows

▪ 𝑎 is a parameter that decreases linearly from 2 to 0 over the course of the
iterations, and 𝑟1 and 𝑟2 are random vectors in [0,1]

Grey Wolf Optimizer

44

𝐷 = 𝐶𝑋𝑝 − 𝑋𝑖𝑋(𝑡 + 1) = 𝑋𝑝 − 𝐴𝐷

𝐴 = 2𝑎 × 𝑟1 − 𝑎 𝐶 = 2 × 𝑟2

▪ In the optimization problem, we do not know where
the “prey” (optimal solution is located).

▪ We assume the alpha, beta and delta have better
knowledge about the potential location of prey.

▪ If 𝑟1 and 𝑟2 are equal to zero, then the new position
of the omega wolf is in the centre of the three
wolves (alpha, beta and gamma).

▪ 𝑟1 and 𝑟2 are used to stimulate exploration
(randomness). As, the number of iterations increase,
𝑎 decreases linearly to 0, and exploration is reduced

Grey Wolf Optimizer

45

𝑋1(𝑡 + 1) = 𝑋𝛼 − 𝐴𝛼𝐷𝛼

𝑋2(𝑡 + 1) = 𝑋𝛽 − 𝐴𝛽𝐷𝛽

𝑋3(𝑡 + 1) = 𝑋𝛿 − 𝐴𝛿𝐷𝛿

𝑋(𝑡 + 1) =
𝑋1 + 𝑋2 + 𝑋3

3

Source: https://www.youtube.com/watch?v=uzcOcXI2C_0

https://www.youtube.com/watch?v=uzcOcXI2C_0

▪ Iteration 1

GWO - Example

46

𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

wolves

α

𝛽

𝛿

1st wolf

𝐴 = 2𝑎 × 𝑟1 − 𝑎

𝐶 = 2 × 𝑟2

𝐷𝛼 = 𝐶𝑋𝑝 − 𝑋𝑖

𝑋1 = 𝑋𝑝 − 𝐴𝐷

𝐴𝛼 = 2 × 1.99 × 0.54 − 1.99 = 0.1592

𝐶𝛼 = 2 × 0.65 = 1.30

𝐷𝛼 = 1.30
1.0005

−2.6027
−

−4.5861

3.9930
=

5.88675

7.3765

𝑋1 =
1.0005

−2.6027
− 0.1592

5.88675

7.3765
=

0.06333

−3.77704

𝐴𝛽 = 2 × 1.99 × 0.34 − 1.99 = −0.6368

𝐶𝛽 = 2 × 0.75 = 1.50

𝐷𝛽 = 1.50
1.7389

2.6541
−

−4.5861

3.9930
=

7.1945

0.0118

𝑋2 =
1.7389

2.6541
+0.6368

7.1945

0.0118
=

6.32036

2.66161

𝐴𝛿 = 2 × 1.99 × 0.74 − 1.99 = 0.9552

𝐶𝛿 = 2 × 0.34 = 0.68

𝐷𝛿 = 0.68
−0.0215

4.1747
−

−4.5861

3.9930
=

4.57148

1.1542

𝑋3 =
−0.0215

4.1747
− 0.9552

4.57148

1.1542
=

−4.38818

3.07221

𝑥1 𝑥2

0.66517 0.65226

wolves

𝑋 =
𝑋1 + 𝑋2 + 𝑋3

3

𝑥1 =
0.06333 + 6.32036 + 4.38818

3
= 0.66517

𝑥2 =
−3.77704 + 2.66161 + 3.07221

3
= 0.65226

𝑓 𝑥 = 7.3734 < 65.0885 (accept)

𝑎 = 2 − 2
1

100
= 1.99

Repeat for the other wolves

▪ Iteration 1

GWO - Example

47

𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

wolves

α

𝛽

𝛿

𝑥1 𝑥2

0.66517 0.65226

2.39678 3.07265

0.48362 -0.25494

1.7389 2.6541

0.41150 -0.91718

wolves

𝑓(X)

7.3734

27.90547

3.36963

22.5470

1.54224α

𝛽

𝛿

Same solution because
a better solution was
not found

Repeat until termination criteria

Swarm Optimization &

Hybridization with Evolutionary Algorithms

48

Nuno Antunes Ribeiro

Assistant Professor

▪ The Artificial Honey Bee Colony Algorithms is aimed at dealing with
continuous optimization problems. What about discrete optimization
problems?

Artificial Honey Bee Algorithm

49

Step 1 – Employed Bees

5 4 4 2

5 4 3 1

3 5 4 5

…

Alternative 1: Loop through all the bees
and apply crossover with a random solution
Alternative 2: Loop through all the bees
apply local search algorithm

Step 2 – Onlooker Bees

5 4 4 2

5 4 3 1

3 5 4 5

…

Loop through all the bees by randomly picking 1
solution with a probability proportional to the fitness.
Alternative 1: apply crossover with a random solution
Alternative 2: apply local search algorithm
If solution obtained is not improved, increase trial.

Step 3 – Scout Bees

2 1 1 3

For all the bees assigned to solutions
that exceed the trial limit specified,
generate a new random solution – by
applying crossover between 2 random
solutions + mutation

▪ The Cuckoo Search Algorithm is aimed at dealing with continuous
optimization problems. What about discrete optimization problems?

Cuckoo Search Algorithm

50

Step 1 – Crossover with the best
solution + mutation; if better
replace current solution in the nest

5 4 4 2

5 4 3 1

3 5 4 5

…

Step 2 – Eliminate new solutions given a random
probability, and generate new solutions by selecting two
random solutions + mutation

5 4 4 2

5 4 3 1

3 5 4 5

…

▪ The Grey Wolf Optimizer Algorithm is aimed at dealing with continuous
optimization problems. What about discrete optimization problems?

Grey Wolf Optimizer

51

𝛼

𝛿
𝛽

𝜔

𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟?

5 4 4 2 5 2 1 1 4 5

3 3 3 2 5 3 3 1 5 3 5 4 3 1 1 5 3 4 1 5𝜔 𝛼

𝛽

3 5 4 5 3 1 4 1 2 2𝛿

Step 1 - crossover with the 𝜹 wolf

Step 2 - crossover with the 𝜷 wolf

Step 3 - crossover with the 𝜶 wolf

Step 4 - mutation (mutation rate decreases with the
number of iterations)

Concluding Remarks

52

Nuno Antunes Ribeiro

Assistant Professor

Metaheuristics for Prescriptive and
Predictive Analytics

53

Statistics
Data Aggregation
Data Mining

Regression Models
Machine Learning
Simulation

Optimization

54

Metaheuristics for Prescriptive and
Predictive Analytics

Prescriptive Analytics

(optimize)

Predictive Analytics

(predict)

Linear Optimization

Discrete Optimization

Black-box Optimization

Non-linear Optimization

Metaheuristics

Exact Methods

Specialized Heuristics

Solution MethodsTypes of Models Applications

Scheduling

Routing

Assignment

Investment

Design
…

Types of Models

Supervised Learning

Reinforcement Learning

Simulation

Unsupervised Learning

Solution Methods

Feature Selection

Parameter Tunning

Model Selection

Model Architecture

Neuroevolution

…

Multi-Objective
Optimization

Genetic Programming
Metaheuristics

Specialized Heuristics

Regression Methods

Trial and Error

55

Metaheuristics for Prescriptive and
Predictive Analytics

Prescriptive Analytics

(optimize)

Predictive Analytics

(predict)

Linear Optimization

Discrete Optimization

Black-box Optimization

Non-linear Optimization

Metaheuristics

Exact Methods

Specialized Heuristics

Solution MethodsTypes of Models Applications

Scheduling

Routing

Assignment

Investment

Design
…

Types of Models

Supervised Learning

Reinforcement Learning

Simulation

Unsupervised Learning

Metaheuristics

Specialized Heuristics

Solution Methods

Feature Selection

Parameter Tunning

Model Selection

Model Architecture

Neuroevolution

Multi-Objective
Optimization

Genetic Programming

Transportation
Supply Chain & Logistics
Distribution Systems
Storage Systems
Healthcare
Energy Systems
Water Resources
Airports and Airlines
Structural Optimization
Product development
Sports
Project Management
Finances
Marketing
Robotics
Image Recognition
Text Analytics
Etc.

Regression Methods

Trial and Error

56

From Prescriptive and Predictive Analytics

Route

Development

Fleet

Assignment

Timetable

Development

Pricing and

Revenue

Management

OptimizePredict

Where to fly the aircraft

profitably?

At what times should flight

departures be schedule?

What type of aircraft should

be used for each flight?

Which fares to offer on each

flight and how many seats to

allocate across each fare?

Formulated as a sequence of
Discrete Optimization Problems

Passenger

Demand

Passenger

Choices

How passenger choose among

flights?

How passengers are

influenced by the schedules,

prices, airlines, airports, etc.

Formulated as a discrete-choice
model, or machine learning

Example: Airline Planning

▪ “All optimization algorithms perform equally well when their performance is
averaged across all possible problems”

No Free Lunch" Metaphor

57
https://www.cartoonstock.com/directory/r/reataurant.asp

https://www.cartoonstock.com/directory/r/reataurant.asp

No Free Lunch" Metaphor

58

The original NFL theorems, were derived for ML and only later generalized to optimization

Selection of the Optimization Algorithm

59

CPU
Performance

Solution
Quality

Fidelity
▪ Design problems: Design problems are generally solved once

and involve investments (e.g. telecommunication network design
and processor design, etc.)

▪ Control problems: Require very fast heuristics; the quality of the
solutions is less critical (e.g. routing messages in a computer
network; traffic management in a city; ride-sharing operations;
text analytics, etc.) .

▪ Planning problems: In this class of problems, a trade-off
between the quality of solution and the search time must be
optimized; (e.g. scheduling of operations ; task assignment, etc.)

Design Problems Control Problems

Specialized Heuristics
Greedy Heuristics
Local Search Algorithms

Exact Methods of
Optimization

Specialized Heuristics

Metaheuristics

Metaheuristics

Selection of the Optimization Algorithm

60

CPU
Performance

Solution
Quality

Fidelity
▪ Design problems: Design problems are generally solved once

and involve investments (e.g. telecommunication network design
and processor design, etc.)

▪ Control problems: Require very fast heuristics; the quality of the
solutions is less critical (e.g. routing messages in a computer
network; traffic management in a city; ride-sharing operations;
text analytics, etc.) .

▪ Planning problems: In this class of problems, a trade-off
between the quality of solution and the search time must be
optimized; (e.g. scheduling of operations ; task assignment, etc.)

Design Problems Control Problems

Metaheuristics

Level of sophistication

Last Slide :(

61

