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▪ In swarm behavior different tasks are performed 
simultaneously by specialized individuals – division 
of labor

▪ Honey bees are organized in 3 groups:

• Employed Bees

• Onlookers

• Scouts

▪ Employed Bees search food around their assigned 
food sources.

▪ Onlooker Bees evaluate the nectar information 
taken from all employed bees and then choose a 
food source to further investigate

▪ Scout bees randomly search for new food sources to 
be in investigated – Scout bees are employed bees 
who's their assigned food source has been 
abandoned (due to low quantity of nectar). 

Behavior of Honey Bee Swarm
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▪ The exchange of information among bees is the most important 
occurrence in the formation of the collective knowledge

▪ Communication among bees related to quality of food sources (amount of 
nectar + distance) occurs in the dancing area

▪ The related dance is called waggle dance

• Direction (angle of the dance)

• Distance (duration of the dance)

• Quality (frequency of the dance)

Exchange of Information
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▪ Step 1 – Generate initial population of honey bees (usually 50% of 
employed bees and 50% of onlooker bees) – each employed bee is 
assigned a random food source (random solution)

▪ Step 2 – Employed bees produce modifications on the current food 
source location (solution). Provided that the nectar amount (fitness) of 
the new positions is higher than that of the previous one, the bee 
memorizes the new position (solution) and forgets the old one

Artificial Honey Bee Algorithm – Search Steps
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𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 - new location selected by bee 𝑖

𝑋𝑖 - old location of bee 𝑖

𝑋𝑝 - random location among all the bees

𝜙 – random number U(-1,1)



▪ Step 3 – After all employed bees complete the search process, they 
share the nectar information (fitness) of the food sources with the 
onlooker bees. Onlooker bees evaluate the nectar information taken 
from all employed bees and chooses a food source with a probability 
related to its nectar amount (fitness).

▪ Step 4 – As in the case of the employed bees, it produces a modification 
on the selected food source location (solution). ). Provided that the 
nectar amount (fitness) of the new positions are higher than that of the 
previous one, the bee memorizes the new position (solution) and forgets 
the old one.

Artificial Honey Bee Algorithm – Search Steps
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𝑝𝑖 =
𝑓𝑖
σ𝑓𝑖

𝑖𝑓 𝑟𝑛𝑑 > 𝑝𝑖 , 𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑝𝑖 - probability of selecting food source from bee 𝑖

𝑓𝑖 - amount of nectar (fitness) of food source from bee 𝑖

𝑟𝑛𝑑 - random number U(0,1)



▪ Step 5 – Food sources that a position cannot be improved further though 
a predetermined number of cycles, which is called limit, are abandoned. 
The corresponding employed bee becomes a scout bee. A new food 
source is randomly selected

▪ Iterate steps 2 to 5 until termination criterion satisfied 

Artificial Honey Bee Algorithm – Search Steps
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𝑙𝑖𝑚𝑖𝑡 =
𝑁

2
× 𝐷

𝑁 – number of bees in the populations
𝐷 – Dimension of the problem (i.e. number of decision variables for each bee)

Limit is typically set as 



ABC - Example
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▪ Objective: maximize 𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

▪ Where: −5 ≤ 𝑥1, 𝑥2 ≤ 5

▪ Population size = 10

▪ No. of employed bees = 5

▪ No. of onlooker bees = 5

▪ Limit = 1 



▪ Iteration 1

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -2.2150

-3.7301 0.4688

4.1338 4.5751

1.3236 4.6489

𝑓(X)

31.9645

32.6168

13.2971

48.6753

41.4537

𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3
Food Source

𝑓′(X)

0.0303

0.0297

0.0699

0.0201

0.0236

𝑓′ 𝑋 = ൞

1

(1 + 𝑓)
; 𝑓 ≥ 0

1 + 𝑓 ; 𝑓 < 0

maximize minimize

𝑡𝑟𝑖𝑎𝑙

0

0

0

0

0



▪ Iteration 1

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -2.2150

-3.7301 0.4688

4.1338 4.5751

1.3236 4.6489

𝑓(X)

31.9645

32.6168

13.2971

48.6753

41.4537

𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

𝑓′(X)

0.0303

0.0297

0.0699

0.0201

0.0236

𝑡𝑟𝑖𝑎𝑙

0

0

0

0

0

𝑥1 𝑥2 𝑓(X) 𝑓′(X) 𝑡𝑟𝑖𝑎𝑙

▪ Iteration 2

𝑓′ 𝑋 = ൞

1

(1 + 𝑓)
; 𝑓 ≥ 0

1 + 𝑓 ; 𝑓 < 0

Employed bee 1
Select random variable – let it be 1
Select random partner – let it be 4
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤

= 3.1472 + 0.71 3.1472 − 4.1338
= 2.4467

𝑋𝑖
𝑛𝑒𝑤 = 2.4467,−4.0246

𝑓(𝑋𝑖) = 23.8259

𝑓′ 𝑋𝑖 = 0.0403 > 0.0303
Worse location than before, thus 
preserve previous location 

Increase trial to 1.



▪ Iteration 1

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -2.2150

-3.7301 0.4688

4.1338 4.5751

1.3236 4.6489

𝑓(X)

31.9645

32.6168

13.2971

48.6753

41.4537

𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

𝑓′(X)

0.0303

0.0297

0.0699

0.0201

0.0236

𝑡𝑟𝑖𝑎𝑙

0

0

0

0

0

𝑥1 𝑥2

3.1472 -4.0246

𝑓(X)

31.9645

𝑓′(X)

0.0303

𝑡𝑟𝑖𝑎𝑙

1

▪ Iteration 2

𝑓′ 𝑋 = ൞

1

(1 + 𝑓)
; 𝑓 ≥ 0

1 + 𝑓 ; 𝑓 < 0

Employed bee 1
Select random variable – let it be 1
Select random partner – let it be 4
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤

= 3.1472 + 0.71 3.1472 − 4.1338
= 2.4467

𝑋𝑖
𝑛𝑒𝑤 = 2.4467,−4.0246

𝑓(𝑋𝑖) = 23.8259

𝑓′ 𝑋𝑖 = 0.0403 > 0.0303
Worse location than before, thus 
preserve previous location 

Increase trial to 1.



▪ Iteration 1

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -2.2150

-3.7301 0.4688

4.1338 4.5751

1.3236 4.6489

𝑓(X)

31.9645

32.6168

13.2971

48.6753

41.4537

𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

𝑓′(X)

0.0303

0.0297

0.0699

0.0201

0.0236

𝑡𝑟𝑖𝑎𝑙

0

0

0

0

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

𝑓(X)

31.9645

37.0428

𝑓′(X)

0.0303

0.0263

𝑡𝑟𝑖𝑎𝑙

1

0

▪ Iteration 2

𝑓′ 𝑋 = ൞

1

(1 + 𝑓)
; 𝑓 ≥ 0

1 + 𝑓 ; 𝑓 < 0

Employed bee 2
Select random variable – let it be 2
Select random partner – let it be 3
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤

= −2.2150 + 0.31 −2.150 − 0.4688
= −3.0470

𝑋𝑖
𝑛𝑒𝑤 = 4.0579,−3.0470

𝑓(𝑋𝑖) = 37.0428

𝑓′ 𝑋𝑖 = 0.0263 < 0.0297
Better location than before, thus 
update previous location 

keep trial to 0.



▪ Iteration 1

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -2.2150

-3.7301 0.4688

4.1338 4.5751

1.3236 4.6489

𝑓(X)

31.9645

32.6168

13.2971

48.6753

41.4537

𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

𝑓′(X)

0.0303

0.0297

0.0699

0.0201

0.0236

𝑡𝑟𝑖𝑎𝑙

0

0

0

0

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

▪ Iteration 2

𝑓′ 𝑋 = ൞

1

(1 + 𝑓)
; 𝑓 ≥ 0

1 + 𝑓 ; 𝑓 < 0

Employed bees updates

Information is shared with the 
onlooker bees



▪ Iteration 2

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2 𝑓(X) 𝑓′(X) 𝑡𝑟𝑖𝑎𝑙

Employed bees phase 

onlooker bees phase 

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 1
rnd= 0.26 >0.2415

Food source 1 is 
selected by the 
first onlooker bee

Select random variable – let it be 2
Select random partner – let it be 3
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 = 3.1472,0.6571

𝑓(𝑋1) = 20.1914

𝑓′ 𝑋1 = 0.0472 > 0.0303
Worse location than before, thus 
increase trial to 2.



▪ Iteration 2

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

𝑓(X)

31.9645

𝑓′(X)

0.0303

𝑡𝑟𝑖𝑎𝑙

2

Employed bees phase 

onlooker bees phase 

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 1
rnd= 0.26 > 0.2415

Food source 1 is 
selected by the 
first onlooker bee

Select random variable – let it be 2
Select random partner – let it be 3
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 = 3.1472,0.6571

𝑓(𝑋1) = 20.1914

𝑓′ 𝑋1 = 0.0472 > 0.0303
Worse location than before, thus 
increase trial to 2.



▪ Iteration 2

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

𝑓(X)

31.9645

37.0428

𝑓′(X)

0.0303

0.0263

𝑡𝑟𝑖𝑎𝑙

2

0

Employed bees phase 

onlooker bees phase 

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 2
rnd= 0.10 < 0.2415

Food source 2 is 
not selected by the 
second onlooker 
bee



▪ Iteration 2

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-5.0000 2.7604

𝑓(X)

31.9645

37.0428

50.4639

𝑓′(X)

0.0303

0.0263

0.0194

𝑡𝑟𝑖𝑎𝑙

2

0

0

Employed bees phase 

onlooker bees phase 

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 2
rnd= 0.45 > 0.2020

Food source 3 is 
selected by the 
second onlooker 
bee

Select random variable – let it be 1
Select random partner – let it be 2
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 = −5.0000,2.7604

𝑓(𝑋1) = 50.4639

𝑓′ 𝑋1 = 0.0194 < 0.0254
Better location than before, thus 
update location



▪ Iteration 2

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-5.0000 2.7604

4.1338 4.5751

𝑓(X)

31.9645

37.0428

50.4639

48.6753

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

Employed bees phase 

onlooker bees phase 

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 3
rnd= 0.07 < 0.1602

Food source 4 is 
not selected by the 
third onlooker bee



▪ Iteration 2

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-5.0000 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

50.4639

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

Employed bees phase 

onlooker bees phase 

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 3
rnd= 0.14 < 0.1871

Food source 5 is 
not selected by the 
third onlooker bee



▪ Iteration 2

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-5.0000 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

50.4639

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

Employed bees phase 

onlooker bees phase 

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 3
rnd= 0.65 > 0. 2415

Food source 1 is 
selected by the 
third onlooker bee

Select random variable – let it be 2
Select random partner – let it be 2
Create new food location (solution)

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 = 3.1472,−3.5847

𝑓(𝑋1) = 28.9921

𝑓′ 𝑋1 = 0.0333 > 0.0303
Worse location than before, thus 
increase trial to 3



▪ Iteration 2

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

5.0000 -3.0470

-5.0000 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

50.3311

50.4639

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

Employed bees phase 

onlooker bees phase 

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 4
rnd= 0.83 > 0. 2092

Food source 2 is 
selected by the 
fourth onlooker 
bee

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 = 5.000, −3.0470

𝑓(𝑋1) = 50.3311

𝑓′ 𝑋1 = 0.0195 < 0.0263
Worse location than before, thus 
increase trial to 3

Select random variable – let it be 1
Select random partner – let it be 5
Create new food location (solution)



▪ Iteration 2

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

5.0000 -3.0470

-5.0000 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

50.3311

50.4639

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

Employed bees phase 

onlooker bees phase 

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 5
rnd= 0.15 < 0. 2020

Food source 3 is 
not selected by the 
fifth onlooker bee



▪ Iteration 2

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

5.0000 -3.0470

-5.0000 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

50.3311

50.4639

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

Employed bees phase 

onlooker bees phase 

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 5
rnd= 0.01 < 0. 1602

Food source 4 is 
not selected by the 
fifth onlooker bee



▪ Iteration 2

ABC - Example

23

𝑥1 𝑥2

3.1472 -4.0246

4.0579 -3.0428

-3.7301 2.7604

4.1338 4.5751

1.6327 4.6489

𝑓(X)

31.9645

37.0428

38.4119

48.6753

41.5487

𝑓′(X)

0.0303

0.0263

0.0254

0.0201

0.0235

𝑡𝑟𝑖𝑎𝑙

1

0

0

1

0

𝑥1 𝑥2

3.1472 -4.0246

5.0000 -3.0470

-5.0000 2.7604

4.1338 4.5751

1.6327 5.0000

𝑓(X)

31.9645

50.3311

50.4639

48.6753

45.7676

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0214

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

Employed bees phase 

onlooker bees phase 

𝑝𝑖

0.2415

0.2092

0.2020

0.1602

0.1871

Onlooker bee 5
rnd= 0.19 > 0.1871

Food source 5 is 
selected by the 
fifth onlooker bee

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝜙(𝑋𝑖 − 𝑋𝑝)

𝑋𝑖
𝑛𝑒𝑤 = 1.6327, 5.0000

𝑓(𝑋1) = 45.7676

𝑓′ 𝑋1 = 0.0214 > 0.0235
Better location than before, thus 
update location

Select random variable – let it be 2
Select random partner – let it be 1
Create new food location (solution)



▪ Iteration 2

ABC - Example
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𝑥1 𝑥2

3.1472 -4.0246

5.0000 -3.0470

-5.0000 2.7604

4.1338 4.5751

1.6327 5.0000

𝑓(X)

31.9645

50.3311

50.4639

48.6753

45.7676

𝑓′(X)

0.0303

0.0263

0.0194

0.0201

0.0214

𝑡𝑟𝑖𝑎𝑙

2

0

0

1

0

𝑥1 𝑥2

3.6045 -1.7170

5.0000 -3.0470

-5.0000 2.7604

4.1338 4.5751

1.6327 5.0000

𝑓(X)

25.4710

50.3311

50.4639

48.6753

45.7676

𝑓′(X)

0.0378

0.0263

0.0194

0.0201

0.0214

𝑡𝑟𝑖𝑎𝑙

0

0

0

1

0

onlooker bees phase 

scout bees phase 

𝑡𝑟𝑖𝑎𝑙 > 𝑙𝑖𝑚𝑖𝑡

true

false

false

false

false

Employed bee 1 becomes a 
scout bee
New solution is generated 
completely at random
We accept the new solution 
even if is worse



Cuckoo Search Algorithm
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▪ The Cuckoo Search Algorithm is inspired by the 
obligate brood parasitism of some cuckoo 
species by laying their eggs in the nests of host 
birds. 

▪ Some cuckoos have evolved in such a way that 
female parasitic cuckoos can imitate the 
colors and patterns of the eggs of a few 
chosen host species. 

▪ This reduces the probability of the eggs 
being abandoned and, therefore, increases 
their reproductivity . 

▪ If host birds discover the eggs are not their 
own, they will either throw them away or simply 
abandon their nests and build new ones

Behavior of Cuckoo breeding

26



▪ Usually, the cuckoo eggs hatch slightly earlier 
than their host eggs. 

▪ Once the first cuckoo chick is hatched, his first 
instinct action is to evict the host eggs by 
blindly propelling the eggs out of the nest.

▪ This action results in increasing the cuckoo chick’s 
share of food provided by its host bird .

▪ Moreover, studies show that a cuckoo chick can 
imitate the call of host chicks to gain access to 
more feeding opportunity.

Behavior of Cuckoo breeding

27



▪ Each egg in a nest represents a solution, and a cuckoo egg 
represents a new solution. 

▪ In the simplest form, each nest has only one egg, but 
the algorithm can be extended to more complicated cases 
in which each nest has multiple eggs representing a set of 
solutions

▪ The CS algorithm is based on three rules:

1. Each cuckoo lays one egg at a time in a randomly 
chosen nest

2. The best eggs (solutions) in a nest will carry over to 
the next generations

3. The number of nests is fixed, and a host can discover 
an alien egg with probability 𝑝𝑎 𝜖 [0,1]. In this case, the 
host bird can either throw the egg away or abandon 
the nest to build a completely new nest.

Cuckoo Search Algorithm

28

Nest 2

Nest n

…

Nest 1

S1

S2

Sn



▪ Step 1 - Generate initial population of n 
host nests

▪ Step 2 – Lay a new egg in the nest n

▪ Step 3 – Compare the fitness of cuckoo’s 
egg with the fitness of the host egg

▪ Step 4 – If the fitness of cuckoo’s egg is 
better than host egg, replace the egg in 
nest 𝑘 by cuckoo’s egg

▪ Step 5 – If host bird notice it 𝑝𝑎 𝜖 [0,1]. , 
the nest is abandoned and new random 
one is built. 

▪ Iterate steps 2 to 5 until termination 
criterion satisfied 

Cuckoo Search Algorithm – Search Steps

29

…

Nest 1

S1

Nest 1

>

S1



CS - Example
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▪ Objective: minimize 𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

▪ Where: −5 ≤ 𝑥1, 𝑥2 ≤ 5

▪ Population size = 5

▪ Probability of abandoning the nest: 𝑝𝑎 = 0.9



▪ Iteration 1

CS - Example
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𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

𝐺1 𝐺2

1.0005 -2.6027

Position 
randomly generated 

𝑈(0,1)

𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

𝑓(X)

4.9692

Nest



▪ Original Cuckoo Search proposes a random 
perturbation relying on levy flights instead of 
random walks. 

Levy Flights

32

𝑋𝑛𝑒𝑤 = 𝑋 + 𝑟𝑎𝑛𝑑𝑛 × 𝐶

𝐶 = 0.01 × 𝑆 × (𝑋 − 𝑔𝑏𝑒𝑠𝑡)

𝑋 – current solution

𝑁(0,1) – random number generated using a normal distribution

𝑆 – random step generated by a symmetric Levy distribution

𝑠 =
𝑢

𝑣 1/𝛽

𝛽 =1.5

𝑢 = 𝑋 ∗ 𝑁(0,1) ∗ 𝜎𝑢

𝑣 = 𝑋 ∗ 𝑁(0,1)



Levy Flights
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Random Walks Levy Walks

▪ In a food-scarce environment, it is a waste of time and energy to always move a short distance 

from the previous position. 

▪ It turns out that a better strategy is to occasionally move a long distance. That puts the animal 

in a new location, which it can explore by moving small distances again. 

▪ This behavior has been observed in many animals that hunt at sea, including albatross, 

sharks, turtles, penguins, and tuna



CS - Example
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▪ Objective: minimize 𝑓 𝑋 = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2 + 2𝑥1 + 4𝑥2 + 3

▪ Where: −5 ≤ 𝑥1, 𝑥2 ≤ 5

▪ Population size = 5

▪ Probability of abandoning the nest: 𝑝𝑎 = 0.9

▪ 𝛽 = 1.5

▪ 𝜎𝑢 = 0.7



▪ Iteration 1

CS - Example
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𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

𝐺1 𝐺2

1.0005 -2.6027

𝑓(X)

4.9692

Nest
▪ Iteration 2

𝑥1 𝑥2

-4.4946 3.9554

𝑓(X)

63.4556

Nest

𝑢 = 𝑥𝑖 ∗ 𝑁(0,1) ∗ 𝜎𝑢 = [−0.7180, −1.0874]

𝑣 = 𝑥𝑖 ∗ 𝑁(0,1) = [−0.2260, −0.5517]

𝑆 =
𝑢

𝑣 1/𝛽
= [−1.9353, −1.6166]

𝑥𝑖 = 𝑥𝑖 + 𝑁(0,1) × 0.01 × 𝑆 × (𝑥𝑖 − 𝑔𝑏𝑒𝑠𝑡)

𝑥1 = −4.5861 + 0.8468 × 0.01 × (−1.9353) × (−4.5861 − 1.0005)

𝑥2 = 3.9930 + 0.3531 × 0.01 × (−1.6166) × (3.9930 + 2.6027)



▪ Iteration 1

CS - Example
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𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

𝐺1 𝐺2

1.0005 -2.6027

𝑓(X)

4.9692

Nest
▪ Iteration 2

𝑥1 𝑥2

-4.4946 3.9554

-0.0326 4.2200

-0.8218 4.3220

1.7398 2.5688

1.0005 -2.6027

𝑓(X)

63.4556

37.7618

41.5516

21.9115

4.9692

Nest



▪ Iteration 1

CS - Example
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𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

𝐺1 𝐺2

1.0005 -2.6027

𝑓(X)

4.9692

Nest
▪ Iteration 2

𝑥1 𝑥2

-4.4946 3.9554

-0.0326 4.2200

-0.8218 4.3220

1.7398 2.5688

1.0005 -2.6027

𝑓(X)

63.4556

37.7618

41.5516

21.9115

4.9692

Nest

𝑥1 𝑥2

-4.4946 3.9554

-0.0215 4.1747

-0.8218 4.3220

1.7398 2.5688

1.0005 -2.6027

𝑓(X)

63.4556

37.1741

41.5516

21.9115

4.9692



𝑓(X)

63.4556

37.7618

41.5516

21.9115

4.9692

𝑓(X)

63.4556

37.1741

41.5516

21.9115

4.9692

▪ Iteration 1

CS - Example
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𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

𝐺1 𝐺2

-2.5151 -0.4597

𝑓(X)

1.5122

Nest
▪ Iteration 2

𝑥1 𝑥2

-4.4946 3.9554

-0.0326 4.2200

-0.8218 4.3220

1.7398 2.5688

1.0005 -2.6027

Nest

𝑥1 𝑥2

-4.4946 3.9554

-0.0215 4.1747

-0.8218 4.3220

1.7398 2.5688

1.0005 -2.6027

𝑟𝑎𝑛𝑑𝑜𝑚
𝑛𝑢𝑚𝑏𝑒𝑟

0.97

0.14

0.24

𝒓 < 𝟎. 𝟐𝟓 ?

𝑥1 𝑥2

-4.4946 3.9554

-0.0215 4.1747

-0.2781 1.0026

-2.5151 -0.4597

1.0005 -2.6027

𝑓(X)

63.4556

37.1741

7.8155

1.5122

4.9692



Recall: Mutation Operator in DE (Lec. 12)
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▪ Original CS uses the mutation operator from differential evolution (see lecture 12 –
slide 60) to randomly generate a new solution when a cuckoo rejects a solution. This 
ensures that the solution generated is not completely random.

𝑉𝑖𝐺 = 𝑋𝑟1𝑖𝐺 + 𝜆 𝑋𝑟2𝑖𝐺− 𝑋𝑟3𝑖𝐺
𝜆 is a factor from 0 to 2

https://matteding.github.io/2019/04/
17/differential-evolution/

https://matteding.github.io/2019/04/17/differential-evolution/


Grey Wolf Optimizer
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Social Hierarchy of Grey Wolf

41

▪ Grey wolfs are organized in 4 groups:
• Alpha, or the leaders, are responsible for making decisions about hunting, sleeping 

place, time to wake, etc. Interestingly the alpha is not necessarily the strongest member 
of the pack but the best in terms of managing the pack.

• Beta, or the advisors, are subordinate wolves that help the alpha in decision-making or 
other pack activities. The beta wolf should respect the alpha, but commands the other 
lower-level wolves. Beta wolves are often the best candidates to be the alpha when this 
passes away or becomes old.

• Delta, or the subordinate, often comprise wolves from different categories – scouts, 
sentinels, hunters, caretakers, elders. Scouts are responsible for watching the 
boundaries of the territory and warning the pack in case of any danger.  Sentinels 
protect and guarantee safety of the pack. Elders are the experienced wolves who used 
to be alpha or beta. Hunters help the hunters and betas hunting prey. Caretakers are 
responsible for caring for the weak, ill, and wounded wolves

• Omega, or the scapegoat, the lowest ranking member of the pack. The omega lives on 
the outskirts of the pack, usually eating last. The omega serves as both a stress-
reliever and instigator of play. They may seem not important, but the whole pack fights 
when there is no omega.\



▪ The hunting operation is usually 
guided by the alpha.

▪ The beta and delta might 
participate in hunting occasionally

▪ The main phases of grey wolf 
hunting are as follows:

• Tracking, chasing and 
approaching the prey

• Pursuing, encircling, and 
harassing the prey until it stops 
moving

• Attack towards the prey

Hunting Mechanism of Grey Wolves

42



▪ In the grey wolf optimizer 
(GWO), we consider the fittest 
solution as the alpha α, and the 
second and the third fittest 
solutions are named beta 𝛽 and 
delta 𝛿, respectively.

▪ The rest of the solutions are 
considered omega 𝜔.

▪ The 𝝎 solutions are guided by 
the 𝜶,𝜷 and 𝜹

Grey Wolf Optimizer

43



▪ During the hunting, the grey wolves encircle the prey.

▪ The mathematical model of the encircling behaviour is presented as follows

▪ Where 𝑡 is the current iteration, 𝑋𝑝 is the position vector of the “prey”, and 𝑋 is the 
position vector of a omega grey wolf. 𝐴 and 𝐶 are coefficient vectors calculated as 
follows

▪ 𝑎 is a parameter that decreases linearly from 2 to 0 over the course of the 
iterations, and 𝑟1 and 𝑟2 are random vectors in [0,1]

Grey Wolf Optimizer

44

𝐷 = 𝐶𝑋𝑝 − 𝑋𝑖𝑋(𝑡 + 1) = 𝑋𝑝 − 𝐴𝐷

𝐴 = 2𝑎 × 𝑟1 − 𝑎 𝐶 = 2 × 𝑟2



▪ In the optimization problem, we do not know where 
the “prey” (optimal solution is located).

▪ We assume the alpha, beta and delta have better 
knowledge about the potential location of prey.

▪ If 𝑟1 and 𝑟2 are equal to zero, then the new position 
of the omega wolf is in the centre of the three 
wolves (alpha, beta and gamma).

▪ 𝑟1 and 𝑟2 are used to stimulate exploration 
(randomness). As, the number of iterations increase, 
𝑎 decreases linearly to 0, and exploration is reduced

Grey Wolf Optimizer

45

𝑋1(𝑡 + 1) = 𝑋𝛼 − 𝐴𝛼𝐷𝛼

𝑋2(𝑡 + 1) = 𝑋𝛽 − 𝐴𝛽𝐷𝛽

𝑋3(𝑡 + 1) = 𝑋𝛿 − 𝐴𝛿𝐷𝛿

𝑋(𝑡 + 1) =
𝑋1 + 𝑋2 + 𝑋3

3

Source: https://www.youtube.com/watch?v=uzcOcXI2C_0

https://www.youtube.com/watch?v=uzcOcXI2C_0


▪ Iteration 1

GWO - Example
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𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

wolves

α

𝛽

𝛿

1st wolf

𝐴 = 2𝑎 × 𝑟1 − 𝑎

𝐶 = 2 × 𝑟2

𝐷𝛼 = 𝐶𝑋𝑝 − 𝑋𝑖

𝑋1 = 𝑋𝑝 − 𝐴𝐷

𝐴𝛼 = 2 × 1.99 × 0.54 − 1.99 = 0.1592

𝐶𝛼 = 2 × 0.65 = 1.30

𝐷𝛼 = 1.30
1.0005

−2.6027
−

−4.5861

3.9930
=

5.88675

7.3765

𝑋1 =
1.0005

−2.6027
− 0.1592

5.88675

7.3765
=

0.06333

−3.77704

𝐴𝛽 = 2 × 1.99 × 0.34 − 1.99 = −0.6368

𝐶𝛽 = 2 × 0.75 = 1.50

𝐷𝛽 = 1.50
1.7389

2.6541
−

−4.5861

3.9930
=

7.1945

0.0118

𝑋2 =
1.7389

2.6541
+0.6368

7.1945

0.0118
=

6.32036

2.66161

𝐴𝛿 = 2 × 1.99 × 0.74 − 1.99 = 0.9552

𝐶𝛿 = 2 × 0.34 = 0.68

𝐷𝛿 = 0.68
−0.0215

4.1747
−

−4.5861

3.9930
=

4.57148

1.1542

𝑋3 =
−0.0215

4.1747
− 0.9552

4.57148

1.1542
=

−4.38818

3.07221

𝑥1 𝑥2

0.66517 0.65226

wolves

𝑋 =
𝑋1 + 𝑋2 + 𝑋3

3

𝑥1 =
0.06333 + 6.32036 + 4.38818

3
= 0.66517

𝑥2 =
−3.77704 + 2.66161 + 3.07221

3
= 0.65226

𝑓 𝑥 = 7.3734 < 65.0885 (accept)

𝑎 = 2 − 2
1

100
= 1.99

Repeat for the other wolves



▪ Iteration 1

GWO - Example
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𝑥1 𝑥2

-4.5861 3.9930

-0.0215 4.1747

-0.8079 4.3295

1.7389 2.6541

1.0005 -2.6027

𝑓(X)

65.0885

37.1741

41.5973

22.5470

4.9692

wolves

α

𝛽

𝛿

𝑥1 𝑥2

0.66517 0.65226

2.39678 3.07265

0.48362 -0.25494

1.7389 2.6541

0.41150 -0.91718

wolves

𝑓(X)

7.3734

27.90547

3.36963

22.5470

1.54224α

𝛽

𝛿

Same solution because 
a better solution was 
not found

Repeat until termination criteria



Swarm Optimization &

Hybridization with Evolutionary Algorithms
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Nuno Antunes Ribeiro

Assistant Professor



▪ The Artificial Honey Bee Colony Algorithms is aimed at dealing with 
continuous optimization problems. What about discrete optimization 
problems?

Artificial Honey Bee Algorithm

49

Step 1 – Employed  Bees

5 4 4 2

5 4 3 1

3 5 4 5

…

Alternative 1: Loop through all the bees
and apply crossover with a random solution
Alternative 2: Loop through all the bees 
apply local search algorithm

Step 2 – Onlooker  Bees

5 4 4 2

5 4 3 1

3 5 4 5

…

Loop through all the bees by randomly picking 1 
solution with a probability proportional to the fitness.
Alternative 1: apply crossover with a random solution
Alternative 2: apply local search algorithm
If solution obtained is not improved, increase trial.

Step 3 – Scout  Bees

2 1 1 3

For all the bees assigned to solutions 
that exceed the trial limit specified, 
generate a new random solution – by 
applying crossover between 2 random 
solutions + mutation



▪ The Cuckoo Search Algorithm is aimed at dealing with continuous 
optimization problems. What about discrete optimization problems?

Cuckoo Search Algorithm
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Step 1 – Crossover with the best 
solution  + mutation; if better 
replace current solution in the nest

5 4 4 2

5 4 3 1

3 5 4 5

…

Step 2 – Eliminate new solutions given a random 
probability, and generate new solutions by selecting two 
random solutions + mutation

5 4 4 2

5 4 3 1

3 5 4 5

…



▪ The Grey Wolf Optimizer Algorithm is aimed at dealing with continuous 
optimization problems. What about discrete optimization problems?

Grey Wolf Optimizer
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𝛼

𝛿
𝛽

𝜔

𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟?

5 4 4 2 5 2 1 1 4 5

3 3 3 2 5 3 3 1 5 3 5 4 3 1 1 5 3 4 1 5𝜔 𝛼

𝛽

3 5 4 5 3 1 4 1 2 2𝛿

Step 1 - crossover with the 𝜹 wolf 

Step 2 - crossover with the 𝜷 wolf 

Step 3 - crossover with the 𝜶 wolf 

Step 4 - mutation (mutation rate decreases with the 
number of iterations)



Concluding Remarks
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Nuno Antunes Ribeiro

Assistant Professor



Metaheuristics for Prescriptive and 
Predictive Analytics
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Statistics
Data Aggregation
Data Mining

Regression Models
Machine Learning
Simulation

Optimization
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Metaheuristics for Prescriptive and 
Predictive Analytics

Prescriptive Analytics

(optimize)

Predictive Analytics

(predict)

Linear Optimization

Discrete Optimization

Black-box Optimization

Non-linear Optimization

Metaheuristics

Exact Methods

Specialized Heuristics

Solution MethodsTypes of Models Applications

Scheduling

Routing

Assignment

Investment

Design
…

Types of Models

Supervised Learning

Reinforcement Learning

Simulation

Unsupervised Learning

Solution Methods

Feature Selection

Parameter Tunning

Model Selection

Model Architecture

Neuroevolution

…

Multi-Objective 
Optimization

Genetic Programming
Metaheuristics

Specialized Heuristics

Regression Methods

Trial and Error
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Metaheuristics for Prescriptive and 
Predictive Analytics

Prescriptive Analytics

(optimize)

Predictive Analytics

(predict)

Linear Optimization

Discrete Optimization

Black-box Optimization

Non-linear Optimization

Metaheuristics

Exact Methods

Specialized Heuristics

Solution MethodsTypes of Models Applications

Scheduling

Routing

Assignment

Investment

Design
…

Types of Models

Supervised Learning

Reinforcement Learning

Simulation

Unsupervised Learning

Metaheuristics

Specialized Heuristics

Solution Methods

Feature Selection

Parameter Tunning

Model Selection

Model Architecture

Neuroevolution

Multi-Objective 
Optimization

Genetic Programming

Transportation
Supply Chain & Logistics
Distribution Systems
Storage Systems
Healthcare
Energy Systems
Water Resources
Airports and Airlines
Structural Optimization
Product development
Sports
Project Management
Finances
Marketing
Robotics
Image Recognition
Text Analytics
Etc.

Regression Methods

Trial and Error
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From Prescriptive and Predictive Analytics

Route 

Development

Fleet 

Assignment

Timetable 

Development

Pricing and 

Revenue 

Management

OptimizePredict

Where to fly the aircraft 

profitably?

At what times should flight 

departures be schedule?

What type of aircraft should 

be used for each flight?

Which fares to offer on each 

flight and how many seats to 

allocate across each fare?

Formulated as a sequence of 
Discrete Optimization Problems

Passenger 

Demand

Passenger 

Choices

How passenger choose among 

flights?

How passengers are 

influenced by the schedules, 

prices, airlines, airports, etc.

Formulated as a discrete-choice 
model, or machine learning

Example: Airline Planning



▪ “All optimization algorithms perform equally well when their performance is 
averaged across all possible problems”

No Free Lunch" Metaphor

57
https://www.cartoonstock.com/directory/r/reataurant.asp

https://www.cartoonstock.com/directory/r/reataurant.asp


No Free Lunch" Metaphor
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The original NFL theorems, were derived for ML and only later generalized to optimization



Selection of the Optimization Algorithm
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CPU 
Performance 

Solution 
Quality

Fidelity 
▪ Design problems: Design problems are generally solved once 

and involve investments (e.g. telecommunication network design 
and processor design, etc.) 

▪ Control problems: Require very fast heuristics; the quality of the 
solutions is less critical (e.g. routing messages in a computer 
network; traffic management in a city; ride-sharing operations; 
text analytics, etc.) .

▪ Planning problems: In this class of problems, a trade-off 
between the quality of solution and the search time must be 
optimized; (e.g. scheduling of operations ; task assignment, etc.)

Design Problems Control Problems

Specialized Heuristics
Greedy Heuristics
Local Search Algorithms

Exact Methods of 
Optimization

Specialized Heuristics

Metaheuristics

Metaheuristics



Selection of the Optimization Algorithm
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CPU 
Performance 

Solution 
Quality

Fidelity 
▪ Design problems: Design problems are generally solved once 

and involve investments (e.g. telecommunication network design 
and processor design, etc.) 

▪ Control problems: Require very fast heuristics; the quality of the 
solutions is less critical (e.g. routing messages in a computer 
network; traffic management in a city; ride-sharing operations; 
text analytics, etc.) .

▪ Planning problems: In this class of problems, a trade-off 
between the quality of solution and the search time must be 
optimized; (e.g. scheduling of operations ; task assignment, etc.)

Design Problems Control Problems

Metaheuristics

Level of sophistication
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