

Exact Methods of Optimization

Nuno Antunes Ribeiro

Assistant Professor

Engineering Systems and Design

1

Optimization Problem

- **Optimize:** $\max(f(x_1, x_2) = 5x_1 + 8x_2)$
- Constraints: $x_1 + x_2 \le 6$

 $5x_1 + 9x_2 \le 45$

 $x_1, x_2 \ge 0$

- The Carpenter Problem
 - A carpenter can either make chairs or tables
 - Chairs take 5 units of lumber, 1 day of labour, and the carpenter makes \$500
 - Tables take 9 units of lumber, 1 day of labour, and the carpenter makes \$800
 - 45 units of lumber available
 - 6 days of labour available per week

How many chairs and tables to produce per week

$\max(f(x_1, x_2) = 5x_1 + 8x_2)$					
s.t.	s.t. $x_1 + x_2 \le 6$				
$5x_1 + 9x_2 \le 45$					
$x_1, x_2 \ge 0$					
Const	raint 1	Consti	raint 2		
×٦	x2	X]	X2		
Ο	6	9	Ο		
6	0	0	5		

$\max(f(x_1, x_2) = 5x_1 + 8x_2)$						
s.t.	i.t. $x_1 + x_2 \le 6$					
$5x_1 + 9x_2 \le 45$						
$x_1, x_2 \ge 0$						
Constraint 1 Constraint 2						
۲٦	x2	X]	X2			
0	6	9	0			

 $\left(\right)$

max(<i>f</i>	$F(x_1, x_2)$	$= 5x_1 + 3$	8x ₂)			
s.t.	s.t. $x_1 + x_2 \le 6$					
$5x_1 + 9x_2 \le 45$						
	x_1, x_2	≥ 0				
Cons	traint 1	Const	raint 2			
۲N	x2	X]	X2			
0	6	9	0			
6	Ο	0	5			

max(<i>f</i>	$F(x_1, x_2) =$	$= 5x_1 + 3$	8x ₂)			
s.t.	s.t. $x_1 + x_2 \le 6$					
$5x_1 + 9x_2 \le 45$						
$x_1, x_2 \ge 0$						
Const	traint 1	Const	raint 2			
۲l	x2	X]	X2			
Ο	6	9	0			
6	0	0	5			

max(<i>f</i>	(x_1, x_2)	$= 5x_1 + 8x_2)$
s. t.	$x_1 + x$	$z_2 \leq 6$
	5x ₁ +	$9x_2 \le 45$
	x ₁ , x ₂	≥ 0
Const	raint 1	Constraint 2

		CONSU	annz
xl	x2	xl	X2
0	6	9	0
6	0	0	5

from constraint 1; $x_2 = 6 - x_1$

from constraint 2;
$$x_2 = \frac{45 - 9x_2}{5}$$

 $6 - x_1 = \frac{45 - 9x_2}{5} \iff x_2 = 3.75; x_1 = 2,25$

Standard Linear Programming Model

$$\begin{array}{c} \text{Iso-value Line} \\ max z = p_1 x_1 + p_2 x_2 + \dots + p_i x_i \\ \text{s.t.} & c_{11} x_1 + c_{21} x_2 + \dots + c_{i1} x_n \leq \underline{b_1} \\ c_{\text{cost}} & c_{12} x_1 + c_{22} x_2 + \dots + c_{i2} x_n \leq b_2 \\ \dots \\ c_{1j} x_1 + c_{2j} x_2 + \dots + c_{ij} x_i \leq b_j \\ \hline x_1, x_2, \dots, x_i \geq 0 \\ & \text{Jobs} \end{array}$$

Idea of Simplex Algorithm

- The simplex algorithm, created by the American mathematician George Dantzig in 1947, is a very popular algorithm for solving linear programs.
- The Simplex method uses row operations on matrices in Linear Algebra to find the optimal solution of an LP
 - Start at a corner of the feasible region
 - While there is an adjacent corner that is a better solution, move to that corner.
 - For "most" instances, the algorithm terminates (in a finite number of steps) at an optimal solution.

https://sites.google.com/view/40-510/home

 Other more sophisticated methods have also been proposed to solve LP problems, such as the *ellipsoid method* or the *barrier method*

Standard LP Model Formulation

Sets

Set of Jobs: i = 1, 2, ..., i

Set of Constraints: j = 1, 2, ..., j

Parameters

 $p_i = unit of profit of working on job i (profit per unit of time)$

 $c_{ij} = cost \ of \ job \ i \ under \ constraint \ j \ (e.g. manpower, resources, inventory, etc.)$

 $b_j = budget available under constraint j(e.g.no.labours, amount of resources, inv.capacity, etc.)$

Decision Variables

 x_i = amount of time working on job i

Standard LP Model Formulation

What if x_i needs to be integer

i.e. x_i is the number of job *i* completions (e.g. number of chairs or tables?

Integer Programming Model

$$\max(f(x_1, x_2) = 5x_1 + 8x_2)$$

s.t. $x_1 + x_2 \le 6$
 $5x_1 + 9x_2 \le 45$
 $x_1, x_2 \ge 0$, integer

Solving Discrete Optimization Problems

Exaustive Search

- Exhaustive Search is the simplest of the algorithms. It examines every possible combination of permitted levels of all attributes.
- Exhaustive Search is very ineffective and mostly unusable for a real-world problem due to time limitations
- Solutions are generally represented in a search space tree

15

Backtracking

- Backtracking is an algorithmic technique where the goal is to get one or multiple solutions to a problem.
- Backtracking depth-searches for solutions and then backtracks to the most recent valid path as soon as an end node is reached (i.e., we can proceed no further).
- It is eventually faster than exhaustive search since the search space tree is cut whenever a **bounding constraint** is violated

Solution Space = *n*!

Bounding Constraint Yellow and red cannot be adjacent colours

12 feasible solutions

Example: Sum of Subsets Problem

- Subset sum problem is to find subset of elements that are selected from a given set with n elements whose sum adds up to a given number m.
- We are considering the set contains non-negative values. It is assumed that the input set is unique (no duplicates are presented).

W[1: n] =
$$\{3,5,6,7\}$$

m = 15

Solution Space = $2^n = 16$

Branch and Bound

- Rely on two subroutines that (efficiently) compute a lower and an upper bound on the optimal value
 - upper bound can be found by choosing any point in the region, or by a local optimization method
 - lower bound can be found from by applying some relaxation techniques (e.g. LP relaxation)
- Definitions
 - Upper bound: a feasible solution
 - Lower bound: a solution to an "easier" problem
 - Node elimination: (fathom nodes): when lower bound >= upper bound
- Branch and Bound assumes we are solving minimization problems

Item	Α	В	С	D
Value	-10	-10	-12	-18
Weight	2	4	6	9

Let's imagine you could bring a portion of item **D**. What would be the portion to add to solution **ABC**

Item	Α	В	С	D
Value	-10	-10	-12	-18
Weight	2	4	6	9

Weight = 2 + 4 + 6 = 12 + 3 = 15Portion = $3 \div 9$ Value = $10 + 10 + 12 + 18 \times 3 \div 9 = 38$

Item	Α	В	С	D
Value	-10	-10	-12	-18
Weight	2	4	6	9

Weight = 4 + 6 = 10; Weight = 15 - 10 = 5

Upper Bound =
$$10 + 12 = 22$$

Lower Bound = $10 + 12 + \frac{18 \times 5}{9} = 32$ 20

ltem	Α	В	С	D
Value	10	10	12	18
Weight	2	4	6	9

Weight = 2 + 6 = 8; Weight = 15 - 8 = 7

Upper Bound =
$$10 + 12 = 22$$

Lower Bound = $10 + 12 + \frac{18 \times 7}{9} = 36$ 21

22

Item	Α	В	С	D
Value	-10	-10	-12	-18
Weight	2	4	6	9

Weight = 2 + 4 = 6; Weight = 15 - 6 = 9Upper Bound = 10 + 10 = 20Lower Bound = $10 + 10 + \frac{18 \times 9}{9} = 38$

Item	Α	В	С	D
Value	-10	-10	-12	-18
Weight	2	4	6	9

Weight = 2 + 4 + 9 = 15; Weight = 15 - 15 = 0Upper Bound = 10 + 10 + 18 = 38

Lower Bound =
$$10 + 10 + \frac{18 \times 9}{9} = 38$$
 23

Item	Α	В	С	D
Value	-10	-10	-12	-18
Weight	2	4	6	9

Branch and bound builds on the top of LP methods

- If the LP is infeasible (i.e., has no solution), then the IP is also infeasible
- If the LP problem has an integer-valued optimal solution, then the solution is equal to the optimal solution for the IP problem.
- If the LP problem has a non-integer-value, then the problem needs to be decomposed

Branch and bound uses 2 heuristics:

- The branch heuristic:
 - Used to force the Simplex Method away from a non-integer valued solution Many different LP problems are generated in the process
- The bound heuristic:
 - Used to limit the number of LP problems generated by the branch heuristic

$$\label{eq:star} \begin{split} \max(f(x_1,x_2) &= 5x_1 + 8x_2) \\ \text{s.t.} & x_1 + x_2 \leq 6 \\ & 5x_1 + 9x_2 \leq 45 \\ & \textbf{x_1,x_2 \geq 0} \text{, integer} \end{split}$$

- We can force Simplex Method to avoid using x₂=3.75
- The optimal integer solution have be one of the following:

 $\begin{array}{l} x_2,\leq 3\\ x_2\geq 4 \end{array}$

$$max(f(x_1, x_2) = 5x_1 + 8x_2)$$

s.t. $x_1 + x_2 \le 6$
 $5x_1 + 9x_2 \le 45$
 $x_1, x_2 \ge 0$, integer

- We can force Simplex Method to avoid using x₂=3.75
- The optimal integer solution have be one of the following:

 $x_2, \leq 3$ $x_2 \geq 4$

Dynamic Programming

- Dynamic Programming (DP) is an algorithmic technique for solving an optimization problem by breaking it down into simpler subproblems and utilizing the fact that the optimal solution to the overall problem depends upon the optimal solution to its subproblems.
- DP relies on memoization (not memorization!) by storing past results and reusing it so as to not repeat expensive computation
- Let us compute Fibonacci of 5 using DP

https://stemettes.org/zine/articles/fibonacci-in-nature/

Example: Computing Fibonacci Sequence

In mathematics, the Fibonacci numbers, commonly denoted f_n, form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1.

Non-Linear Optimization

A **non-linear program** can have a linear or nonlinear objective function with linear and/or nonlinear constraints Chairs

Optimize:
$$\max(f(x_1, x_2) = 5 \ln(x_1) + 8 \ln(x_2))$$

Constraints: $x_1 + x_2 \le 6$
 $5x_1 + 9x_2 \le 45$
 $x_1, x_2 \ge 0$, integer
Example: Non-linear
behaviour due to
economies of scale
Number of Chairs/Tables

Black Box" optimization refers to a problem setup in which an optimization algorithm is supposed to optimize (e.g., minimize) an objective function through a so-called black-box interface (simulation; machine learning; etc.)

....

15

20

10

Optimization Software

Nuno Antunes Ribeiro

Assistant Professor

Optimization Software

Optimization Software

Optimization Solver	Programming Language	
 Gurobi Cplex Xpress 	 Gurobi IBM CPLEX Mosel 	
 GLPK LP_SOLVE CLP 	 GAMS AMPL Paid Software AIMSS 	
SCIPSoPlex	 Pyomo - Python Free Software Google OR Tools – Python, C++, Java 	
	NEOS* Online Server *https://neos-server.org/neos/ 34	

Pyomo Overview

- Pythonic framework for formulating optimization models
 - Provide a natural syntax to describe mathematical models
 - Formulate large models with a concise syntax
 - Separate modeling and data declarations
 - Enable data import and export in commonly used formats
- Pyomo Documentation:
 - <u>Pyomo Documentation 6.1.2</u>

Fundamental Pyomo Components

Pyomo is an object model for describing optimization problems

Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf
A simple Pyomo Model

Rosenbrock.py

```
from pyomo.environ import *
model = ConcreteModel()
model.x = Var( initialize=-1.2, bounds=(-2, 2) )
model.y = Var( initialize= 1.0, bounds=(-2, 2) )
model.obj = Objective(
    expr= (1-model.x)**2 + 100*(model.y-model.x**2)**2,
    sense= minimize )
```


Getting Started: the Model

Import pyomo environment and create model instance

Modeling the Decision Variables

Declare the decision variables

<pre>model.a_variable = Var(within = NonNegativeReals)</pre>						
↑		↑		1		
The name you assign the object to becomes the object's name, and must be	" a d	within" is optional and sets the variable lomain ("domain" is an lias for "within")		Several pre- defined domains, e.g., "Binary"		

Modeling the Objective Function

Formulate the objective function

Modeling the Constraints

Formulate the model constraints

```
model.a = Var()
model.b = Var()
model.c = Var()
model.c1 = Constraint(
    expr = model.b + 5 * model.c <= model.a )
    f
    "expr" can be an expression,
    or any function-like object
    that returns an expression</pre>
```

Modeling the Sets (Indices)

Declare the sets of the decision variables and parameters

```
model.IDX = range(10)
model.a = Var()
model.b = Var(model.IDX)
model.c1 = Constraint(
    expr = sum(model.b[i] for i in model.IDX) <= model.a )
    Python list comprehensions are
    very common for working over
    indexed variables and nicely
    parallel mathematical notation:
    \sum_{i \in IDX} b_i \leq a
```


Solving Optimization Problems using Pyomo

Nuno Antunes Ribeiro

Assistant Professor

Facility Location Optimization Problem

- Location planning involves specifying the physical position of facilities that provide demanded services.
 - Urban and Regional Planning location of schools, hospitals, bus stops, electric charging stations, solid waste landfills, etc.
 - Business Logistics and Supply Chains location of industrial facilities, warehouses, distribution centres, hubs, offices, etc.
 - Defence and National Security location of military bases, anti-missile systems, fire watchtowers, etc.
 - Electronics Industry- placement of interconnected electronic components onto a printed circuit board or on a microchip
 - Clustering techniques cluster analysis problems can be viewed as facility location problems. The objective is to partition data points into equivalence classes such that points assigned of the same class are close to one another
- There are a variety of different models to solve this problem (p-median problem, quadratic assignment problem, capacitated location problem, etc.)

P-Median Formulation

Sets

Set of candidate locations: i = 1, 2, ..., i

Set of costumers: j = 1, 2, ..., j

Parameters

 $d_j = demand \ of \ costumer \ j$ $c_{ij} = unit \ cost \ of \ satisfying \ customer \ j \ from \ facility \ i$ $p = number \ of \ locations \ to \ open$

Decision Variables

 $x_{ij} = 1$ if customer j is supplied by location i, 0 otherwise $y_i = 1$ if a facility is located at location i, 0 otherwise

P-Median Formulation

$$\min z = \sum_{i \in I} \sum_{j \in J} d_j c_{ij} x_{ij}$$

s.t.

$$\sum_{i \in I} x_{ij} = 1, \qquad \forall j \in I$$
$$\sum_{i \in I} y_i = p$$

 $x_{ij} \leq y_i$, $\forall i \in I, j \in J$

 x_{ij} , y_i is binary

Minimize the demandweighted total cost

All of the demand for customer j must be satisfied

Exactly p facilities are located

Demand nodes can only be assigned to open facilities

All variables are binary

Pyomo P-Median Formulation

Pyomo P-Median Formulation

Sets

Create Model
model = AbstractModel()

Set of candidate locations
model.M = RangeSet(n)
Set of customer nodes
model.N = RangeSet(n)

Set of candidate locations: i = 1, 2, ..., i

Set of costumers: j = 1, 2, ..., j

Parameters

Number of facilities
model.p = openfac
d[j] - demand of customer j
model.d = Param(model.N, initialize=dj_model)
c[i,j] - unit cost of satisfying customer j from facility i
model.c = Param(model.M, model.N, initialize=cij_model)

Decision Variables

x[i,j] - 1 if customer j is supplied by location i
model.x = Var(model.M, model.N, within=Binary)

y[i] - a binary value that is 1 if a facility is located at location i
model.y = Var(model.M, within=Binary)

p = number of locations to open $d_j = demand of costumer j$ $c_{ij} = unit cost of satisfying customer j$ from facility i

> $x_{ij} = 1$ if customer j is supplied by location i, 0 otherwise

$$y_i = 1$$
 if a facility is located at
location i, 0 otherwise

Pyomo P-Median Formulation

Objective Function

```
# Minimize the demand-weighted total cost
def cost_(model):
    return sum(model.d[j]*model.c[i,j]*model.x[i,j] for i in model.M for j in model.N)
model.cost = Objective(rule=cost_)
min z = \sum_{i \in I} \sum_{j \in I} d_j c_{ij} x_{ij}
```

Constraints

All of the demand for customer j must be satisfied $x_{ij} = 1$, $\forall j \in J$ **def** demand (model, j): return sum(model.x[i,j] for i in model.M) == 1.0 model.demand = Constraint(model.N, rule=demand) # Exactly p facilities are located $y_i = p$ def facilities (model): return sum(model.y[i] for i in model.M) == model.p model.facilities = Constraint(rule=facilities) # Demand nodes can only be assigned to open facilities def openfac (model, i, j): $\forall i \in I, j \in J$ $x_{ii} \leq y_i$, return model.x[i,j] <= model.y[i]</pre> model.openfac = Constraint(model.M, model.N, rule=openfac)

Pyomo P-Median Solve Model

Solve Model

instance = model.create_instance()
opt = pyo.SolverFactory('gurobi')
opt.solve(instance, options={'TimeLimit': 10000},tee=True)

Solved with barrier

Root relaxation: objective 1.613801e+08, 30112 iterations, 157.47 seconds Objective Bounds Nodes Current Node Work Expl Unexpl Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time 0 1.6138e+08 0 538 2.3800e+08 1.6138e+08 32.2% - 180s 0 1.615296e+08 1.6138e+08 0.09% - 182s н 0 0 - 188s Н 0 0 1.613936e+08 1.6138e+08 0.01%

Explored 1 nodes (30112 simplex iterations) in 188.72 seconds Thread count was 4 (of 4 available processors)

Solution count 3: 1.61394e+08 1.6153e+08 2.37999e+08

Optimal solution found (tolerance 1.00e-04) Best objective 1.613935998492e+08, best bound 1.613800660278e+08, gap 0.0084%

Pyomo P-Median Outputs

Read output variables

xij_dic = {i:int(value(j)) for (i,j) in instance.x.items()} xij = pd.DataFrame(xij_dic.values(), index = xij_dic.keys()).unstack() linkindex = np.where(xij == 1)

Plot results

```
def connectpoints(x,y,p1,p2):
    x1, x2 = x[p1], x[p2]
    y1, y2 = y[p1], y[p2]
    plt.plot([x1,x2],[y1,y2],'k-')
```

```
for i_index in range(len(linkindex[0])):
    connectpoints(coordlct x,coordlct y,linkindex[0][i index],linkindex[1][i index])
```

plt.plot(coordlct_x, coordlct_y, 'o', color='black');

```
yi_dic = {i:int(value(j)) for (i,j) in instance.y.items()}
yi = pd.DataFrame(yi_dic.values(), index = yi_dic.keys()).unstack()
facilityindex = np.where(yi == 1)
```

```
for i_index in range(len(facilityindex[0])):
    plt.plot(coordlct_x[facilityindex[0][i_index]], coordlct_y[facilityindex[0][i_index]], 'o', color='red');
```


Travelling Salesman Problem

- The Traveling Salesman Problem is one of the most intensively studied problems in computational mathematics.
- Given a collection of cities and the cost of travel between each pair of them, the traveling salesman problem, or TSP for short, is to find the cheapest way of visiting all of the cities and returning to your starting point.

Travelling Salesman Problem

- Much of the work on the TSP is motivated by its use as a platform for the study of general methods that can be applied to a wide range of discrete optimization problems. This is not to say, however, that the TSP does not find applications in many fields.
- The TSP naturally arises as a subproblem in many transportation and logistics applications, for example the problem of arranging school bus routes to pick up the children in a school district.
- Other applications: scheduling of service calls at cable firms, the delivery of meals to homebound persons, the scheduling of stacker cranes in warehouses, the routing of trucks for parcel post pickup
- Also: genome sequencing, NASA Starlight space interferometer program, semi-conductor manufacturing, compute DNA sequences, fiber optical networks, deliver power to electronic devices
- https://www.math.uwaterloo.ca/tsp/apps/index.html

Solving the Travelling Salesman Problem

https://www.math.uwaterloo.ca/tsp/apps/index.html

Solving the Travelling Salesman Problem

- Size: 1,904,711-cities
- Best lower bound: 7,512,218,268 (June, 2007)
- Best solution: 7,515,755,956 (February, 2021) --- Gap 0.0471%

TSP Formulation

□ Sets

Set of cities to visit: i = 1, 2, ..., i

Parameters

 $c_{ij} = distance from i and j$

Decision Variables

 $x_{ij} = 1$ if city j is visited right after city i, 0 otherwise $u_i = Auxiliary$ variable indicating tour ordering

TSP Formulation

$$\min z = \sum_{i,j \in I} c_{ij} x_{ij}$$

s.t.

$$\sum_{j \in I} x_{ij} = 1, \qquad \forall i \in I$$
$$\sum_{i \in I} x_{ij} = 1, \qquad \forall j \in I$$

Minimize the total distance

There is only one departure from each city

There is only one arrival to each city

There is only a single tour covering $u_i - u_j + nx_{ij} \le (n-1) , \qquad \forall i, j \in I \mid 2 \le i \ne j \le n$ all cities, and not two or more n = card(I)disjointed tours x_{ij} , is binary $0 \leq u_i \leq n$, $\forall i \in I$

57

Sets

<pre># Create Model model = AbstractModel()</pre>		
<pre># Set of cities to visit model.N = RangeSet(n) model.U= RangeSet(2,n)</pre>	Set of cities to visit: $i = 1, 2,, i$ Set of cities to visit w/o considering origin: $i = 2, 3,, i$	

Parameters

<pre># c[i,j] - distance from i and j</pre>		$c_{\cdot \cdot} = distance from i and i$
<pre>model.c = Param(model.N, model.N,</pre>	initialize=cij_model)	$c_{ij} = aistance jrom t ana j$

Decision Variables

60

 $\forall j \in I$

Pyomo TSP Formulation

Objective Function

```
# Minimize total distance
def cost (model):
    return sum(model.c[i,j]*model.x[i,j] for i in model.N for j in model.N)
model.cost = Objective(rule=cost )
```

```
\min z = \sum_{i \in I} c_{ij} x_{ij}
```

 $\sum_{i=1}^{n} x_{ij} = 1 ,$

Constraints

There is only one departure from each city def arrive_(model, j): return sum(model.x[i,j] for i in model.N if i!=j) == 1 model.arrive = Constraint(model.N, rule=arrive)

```
# There is only one arrival to each city
def depart_(model, i):
    return sum(model.x[i,j] for j in model.N if j!=i ) == 1
model.depart = Constraint(model.N, rule=depart )
```

```
\sum_{i\in I} x_{ij} = 1 ,
                                                                                                                     \forall i \in I
# There is only a single tour covering all cities, and not two or more disjointed tours
```

```
def singletour (model,i,j):
   if i!=j:
        return model.u[i] - model.u[j] + model.x[i,j] * n <= n-1 u_i - u_i + nx_{ii} \leq (n-1)
    else:
        return model.u[i] - model.u[j] == 0
                                                                                                  \forall i, j \in I \mid 2 \leq i \neq j \leq n
```

model.singletour = Constraint(model.U,model.N,rule=singletour_)

instance = model.create_instance()
opt = pyo.SolverFactory('gurobi')
opt.solve(instance, options={'TimeLimit': 3600*500},tee=True)

 Nodes
 Current Node
 Objective Bounds
 Work

 Expl Unexpl
 Obj Depth IntInf
 Incumbent
 BestBd
 Gap
 It/Node Time

 0
 0
 653.21664
 0
 195
 4921.99004
 653.21664
 86.7%
 0s

 0
 0
 743.92129
 0
 254
 4921.99004
 743.92129
 84.9%
 1s

 0
 0
 743.95035
 0
 271
 4921.99004
 743.95035
 84.9%
 1s

Root relaxation: objective 6.532166e+02, 355 iterations, 0.02 seconds

-	_							
0	0	743.92129	0	254 4921.99004	743.92129	84.9%	-	1s
0	0	743.95035	0	271 4921.99004	743.95035	84.9%	-	1s
0	0	743.95035	0	273 4921.99004	743.95035	84.9%	-	1s
0	0	751.90069	0	243 4921.99004	751.90069	84.7%	-	2s
0	0	752.86330	0	233 4921.99004	752.86330	84.7%	-	2s
0	0	752.89659	0	240 4921.99004	752.89659	84.7%	-	2s
0	0	752.89659	0	240 4921.99004	752.89659	84.7%	-	2s

	969	603	809.00378	200	244	809.00378	775.49354	4.14%	31.4	110s
Н	975	576			7	94.3991143	775.77367	2.34%	31.3	112s
	998	592	794.39911	248	118	794.39911	775.86216	2.33%	39.9	115s
Н	1077	604			7	92.4346674	776.39951	2.02%	44.2	119s
	1280	648	789.86207	74	187	792.43467	776.59202	2.00%	42.8	120s
	2661	443	cutoff	80		792.43467	779.77907	1.60%	48.2	125s
*	4316	300		76	7	86.7827327	784.41635	0.30%	47.4	129s
	4611	272	786.45151	88	62	786.78273	784.70306	0.26%	46.0	130s
*	4716	230		72	7	85.9523981	784.75775	0.15%	45.6	130s
*	4849	86		81	7	85.5122306	785.15006	0.05%	45.1	130s

Pyomo TSP Outputs

Read output variables

```
xij_dic = {i:int(np.round(value(j))) for (i,j) in instance.x.items()}
xij = pd.DataFrame(xij_dic.values(), index = xij_dic.keys()).unstack()
linkindex = np.where(xij == 1)
```

```
ui_dic = {i:int(value(j)) for (i,j) in instance.u.items()}
ui = pd.DataFrame(ui_dic.values(), index = ui_dic.keys()).unstack()
sequence = np.where(ui == 1)
uidf=pd.DataFrame(ui)
uidf=uidf.sort_values(by=[0])
pd.set_option('display.max_rows', uidf.shape[0]+1)
```


Vehicle Routing Problem

 In the Vehicle Routing Problem (VRP), the goal is to find optimal routes for multiple vehicles visiting a set of locations. (When there's only one vehicle, it reduces to the Travelling Salesman Problem)

TSP Formulation

Sets

Set of cities to visit: i = 1, 2, ..., i

Parameters

 $c_{ij} = distance from i and j$

 $d_i = demand of customer in city i$ nvhc = number of vehiclescvhc = vehicle capacity

Decision Variables

 $x_{ij} = 1$ if city j is visited right after city i, 0 otherwise $u_i = Auxiliary$ variable indicating tour ordering

VRP Formulation

s.t.

n	$\min z = \sum_{i,j\in I} q$	$c_{ij}x_{ij}$	Minim	ize the total dis	stance
$\sum_{j\in i}$	$\int_{I} c_{ij} x_{ij} = 1 ,$	$\forall i \in I$	Each city there is a de to exactly one othe	eparture er city	
$\sum_{i\in I}$	$c_{ij}x_{ij}=1,$	$\forall j \in I$	Each city is arrived from exactly one othe	d at er city	
	$x_{nj} = nvhc$		Only nvhc vehicles the depot (last cit	leave y)	
$\sum_{i\in I}^{j\in I}$	$x_{in} = nvhc$		Only nvhc vehicles r to the depot (last c	return ity)	All tours start and end in the
u_i	$-u_j + nx_{ij}$	$\leq (n-1) y_i$,	$\forall i, j \in I \mid 1 \leq i$	$\neq j \leq n-1$	depot (i.e. no
n	= card(J)	x _{ij} , is binary	$0 \le u_i \le n$,	$\forall, ji \in I$	ອບມາດທາຊ

Sets

model = AbstractModel()

Set of candidate cities
model.N = RangeSet(n)
model.M = RangeSet(n-1)

Parameters

```
# c[i,j] - distance from i and j
model.c = Param(model.N, model.N, initialize=cij_model)
```

```
# d[j] - demand of customer j
model.d = Param(model.N, initialize=dj_model)
```

Decision Variables

```
# x[i,j] - 1 if city j is visited right after city i, 0 otherwise
model.x = Var(model.N, model.N, within=Binary)
```

u[i] - auxiliary variable indicating tour ordering
model.u = Var(model.N, within=NonNegativeReals)

Objective Function

Minimize the demand-weighted total cost
def cost_(model):|
 return sum(model.c[i,j]*model.x[i,j] for i in model.N for j in model.N)
model.cost = Objective(rule=cost_)

Constraints

Only 1 departs from each city
def departs_(model, j):
 return sum(model.x[i,j] for i in model.N if i!=j) == 1
model.departs = Constraint(model.M, rule=departs_)

Only 1 arrives from each city
def arrives_(model, i):
 return sum(model.x[i,j] for j in model.N if j!=i) == 1
model.arrives = Constraint(model.M, rule=arrives_)

```
# Only nvhc vehicles arrive to the depot (city with index n)
def arrivesdepot_(model):
    return sum(model.x[i,n] for i in model.N) == nvhc
model.departsdepot = Constraint(rule=arrivesdepot_)
```

```
# Only nvhc vehicles depart to the depot (city with index n)
def departdepot_(model):
    return sum(model.x[n,j] for j in model.N) == nvhc
model.arrivesdepot = Constraint(rule=departdepot )
```

```
def singletour_(model,i,j):
    if i!=j:
        return model.u[i] - model.u[j] +cvhc*model.x[i,j] <= cvhc-model.d[i]
    else:
        return model.u[n]== 0</pre>
```

```
model.singletour = Constraint(model.M,model.M,rule=singletour_)
```

Solve Model

instance = opt = pyo. opt.solve(mode Solve (insta	el.create_ins erFactory('gu ance, options	tance robi' ={'Ti	()) meLimit': 1000	0},tee=True)				
1898020 1	119535	5 cutoff	48	58996.250	2 57755.5710	2.10%	10.2	550s	
1918105 1	114070	9 58376.2388	53	24 58996.250	2 57796.2967	2.03%	10.2	555s	
1936846 1	108570) cutoff	60	58996.250	2 57835.7144	1.97%	10.2	560s	
1955533 1	102850	9 58968.5048	52	22 58996.250	2 57877.0488	1.90%	10.1	565s	
1976102 9	96126	cutoff	50	58996.2502	57926.6680	1.81%	10.1	570s	
1993836 8	89929	58775.7200	57	23 58996.2502	57970.7462	1.74%	10.1	575s	
2009394 8	84243	cutoff	87	58996.2502	58011.0204	1.67%	10.1	580s	
2023335 7	78812	infeasible	60	58996.2502	58051.1434	1.60%	10.1	585s	
2036836 7	73501	58926.5236	49	15 58996.2502	58090.8971	1.53%	10.1	590s	
2049888 6	57946	58912.9060	61	12 58996.2502	58135.4420	1.46%	10.1	595s	
2063176 6	51976	infeasible	50	58996.2502	58181.1793	1.38%	10.1	600s	
2077785 5	55086	cutoff	48	58996.2502	58237.1841	1.29%	10.1	605s	
2090984 4	48282	infeasible	69	58996.2502	58295.4634	1.19%	10.0	610s	
2107780 3	38888	cutoff	51	58996.2502	58381.3247	1.04%	10.0	615s	
2123286 2	29412	58612.6235	58	18 58996.2502	58481.8104	0.87%	10.0	620s	
2136164 2	20201	cutoff	62	58996.2502	58594.4752	0.68%	10.0	625s	
2151717	7282	cutoff	67	58996.2502	58804.9760	0.32%	10.0	630s	
Cutting pl	lanes:	:							

Plot results

```
def connectpoints(x,y,p1,p2):
    x1, x2 = x[p1], x[p2]
    y1, y2 = y[p1], y[p2]
    plt.plot([x1,x2],[y1,y2],'k-')
for i_index in range(len(linkindex[0])):
    connectpoints(coordlct_x,coordlct_y,linkindex[0][i_index],linkindex[1][i_index])
```

```
plt.plot(coordlct_x, coordlct_y, 'o', color='black');
```


Activity 1

- Consider the following problem: Given a set of n packages with profit p_j and weight w_j, and a set of m containers with weight capacity c_i, select m disjoint subsets of packages so that the total profit of the selected packages is maximum, while ensuring the containers' capacity is never exceeded
- Exercise 1: Formulate the problem mathematically
- Exercise 2: Solve the problem using pyomo (instances in the next slide)

Activity 1 - Instances

Instance 1

random.seed(1)

- n = 100#number of objects
- b= 5 #number of bins

cap=50

#Generate random locations
value = random.choices(range(10, 100), k=n)
weights = random.choices(range(5, 20), k=n)

Instance 2

random.seed(1)

n = 10000 #number of packages m= 200 #number of containers cap=50

#Generate random locations
profit = random.choices(range(10, 100), k=n)
weights = random.choices(range(5, 20), k=n)
Happy Chinese New Year!

2022: HAPPY NEW YEAR : THE YEAR OF THE TIGER