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Optimization Problem

= Optimize: max( f(xq,x,) = 5x; + 8x,)

= Constraints: X; +X, <6

5X1 + 9X2 < 45
X1, X9 >0

= The Carpenter Problem

A carpenter can either make chairs or tables
Chairs take 5 units of lumber, 1 day of labour, and the carpenter makes $500
Tables take 9 units of lumber, 1 day of labour, and the carpenter makes $800
45 units of lumber available
6 days of labour available per week

How many chairs and tables to produce per week



Linear Programming Model

max( f(xq,x,) = 5x; + 8x,)
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Linear Programming Model

maX(f(x]_; x2) — 5X1 + 8X2)
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Linear Programming Model

max( f(xq,x,) = 5x; + 8x,)
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Linear Programming Model

max( f(xq,x,) = 5x; + 8x,)
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Linear Programming Model

Region of feasible
solutions

—@— Constraint 2
—@®— Constraint 1

X1

01123456?8910

5x; +8x, =27
f(2.25,3.75) = 41.25

max( f(xq,x,) = 5x; + 8x,)
S. L. X1 + X9 < 6

5X1 + 9X2 < 45

X1, X9 >0

Constraint 1 Constraint 2

X1 X2 X X2
O 6 9 O
© O O 5

from constraint 1; x, = 6 — x;

45 — 9x,
5

from constraint 2; x, =

45 — 9x,
6_x1: 5

< x, =3.75;x; = 2,25



Standard Linear Programming Model

Iso-value Line
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ldea of Simplex Algorithm

= The simplex algorithm, created by the American
mathematician George Dantzig in 1947, is a very
popular algorithm for solving linear programs.

= The Simplex method uses row operations on matrices
In Linear Algebra to find the optimal solution of an LP
 Start at a corner of the feasible region

* While there is an adjacent corner that is a better
solution, move to that corner.

« For “most” instances, the algorithm terminates (in a
finite number of steps) at an optimal solution.

https://sites.google.com/view/40-510/home

= QOther more sophisticated methods have also been proposed to solve LP
problems, such as the ellipsoid method or the barrier method


https://sites.google.com/view/40-510/home

Standard LP Model Formulation

[ Sets
Setof Jobs:i=1,2,...,i

Set of Constraints:j = 1,2,...,j

[J Parameters

p; = unit of profit of working on job i (profit per unit of time)

c;j = cost of job i under constraint j (e. g. manpower, resources, inventory, etc. )

b; = budget available under constraint j(e. g.no.labours,amount of resources, inv. capacity, etc.)

0 Decision Variables

x; = amount of time working on job i

10



Standard LP Model Formulation

max zZ = E PiXi

S.t. ZCijxi

iEN — |

iEN —

Sum over all jobs

Vj EM
T
For all constraints

Sum over all jobs

Xl'ZO,

VieN
\
For all jobs

Maximize profits

Subject to budget
constraints

| cannot spend
negative time working
on jobi

What if x; needs to be integer

l.e. x; IS the number of job | completions (e.g. number of chairs or tables?

11



Integer Programming Model

1ON maX(f(xlt x2) — 5X1 + 8X2)
< —@— Constraint 2

9

2 —&@— Constraint 1 s. t. X1 +X, <6

/ 5x, + 9%, < 45

"R i j X1,X2 = 0 ,integer

5 - No longer a feasible solution

a f(2.25,3.75) = 41.25

3

2

1

0 X1

o0 1 2 3 4 5 6 7 8 9 10

12



Solving Discrete Optimization Problems

Today’s class!

Exact Methods

Exhaustive
Search

Branch and X

Backtracking

Other Methods

Dynamic
Programming

All the other

Approximate
Methods

classes!

Heuristics

Meta-Heuristics

Single Solution

Population of
Solution

Local Search

Simulated
Annealing

Tabu Search

Evolutionary
Algorithms

Swarm Search

13



Exaustive Search

= Exhaustive Search is the simplest of the algorithms. It
examines every possible combination of permitted levels of

all attributes.
= Exhaustive Search is very ineffective and mostly unusable

for a real-world problem due to time limitations .
= Solutions are generally represented in a search space tree “:

R B G Solution Space = n!

G B BI\G G R R/\G B R R/\B Bf\G R/\G Rf\B

G Bl G| B G Rl G| R B Rl Bl R| G| B| G| R| Bl R

T T T TR EEEE s 14



Backtracking

Backtracking is an algorithmic technique where the goal is to get
one or multiple solutions to a problem.

Backtracking depth-searches for solutions and then backtracks to
the most recent valid path as soon as an end node is reached (i.e.,
we can proceed no further).

It is eventually faster than exhaustive search since the search
space tree is cut whenever a bounding constraint is violated

R B G Solution Space = n!

Bounding Constraint
G Yellow and red cannot

R G R/ B R/ B
5/ G be adjacent colours
G B G R R/\G B R R/ \B R/\G R/\B 12 feasible
solutions
G B R R R R G| R Bl R

15



Example: Sum of Subsets Problem

= Subset sum problem is to find subset of elements that are WI[1:n] = {3,5,6,7}
selected from a given set with n elements whose sum .
adds up to a given number m. m =15

= We are considering the set contains non-negative values.
It is assumed that the input set is unique (no duplicates Solution Space = 2" = 16
are presented).

1 feasible
solutions

0+13<15

Applications (e.g. computer passwords):
http://www.math.stonybrook.edu/~scott/
') 8<15 blair/Other uses subset sum.html

9+7>15 3+7<15



http://www.math.stonybrook.edu/~scott/blair/Other_uses_subset_sum.html

Branch and Bound

= Rely on two subroutines that (efficiently) compute a lower and an upper bound
on the optimal value

 upper bound can be found by choosing any point in the region, or by a local
optimization method

* lower bound can be found from by applying some relaxation techniques (e.qg.
LP relaxation) - -

= Definitions
« Upper bound: a feasible solution

« Lower bound: a solution to an “easier”
problem

« Node elimination: (fathom nodes):
when lower bound >= upper bound

= Branch and Bound assumes we are solving | | | .
minimization problems 50 100 150 200

No. Nodes 17

'—Uppei' bound |
— Lower bound

Objective Value




Example: Knapsack Problem

7

(=)

Weight limit:
15 kgs

Item A B C D
Value -10 -10 -12 -18
Weight 2 4 6 9




Example: Knapsack Problem

‘ Pick a random initial feasible solution
ABC

Y

(=)

weight: 4
value: 10

Value = 104+ 104+ 12 = 32
Weight limit: ight: 9
Weight =2+4+6 =12 1%!(9;“ ’ alie: 18
7z
Upper Bound =10+ 10+ 12 = 32 15\13,‘4“;;

(best you could achieve so far)

iy
‘..\11.,,4'

Lower Bound="?

ight: 6
(best you could achieve in theory) \::Iget:ﬂ
Item A B C D
Let’s imagine you could bring a
portion of item D. What would be Value 10 10 12 18
the portion to add to solution ABC Weight 2 4 6 9

Weight =2+4+6=12+3 =15
Portion =3+ 9
Value = 10+ 10+ 12+ 18x 3 +9 = 38



Example: Knapsack Problem

Upper = —32
Lower = —38

/o

=)

Weight limit:
15 kgs

weight: 4
value: 10

weight: 9
' value: 18

Item A B C D
Value -10 -10 -12 -18
Weight 2 4 6 9

Weight =4 + 6 = 10 ; Weight =15—-10=15

Upper Bound = 10 + 12 = 22

B 18 X5 B
Lower Bound = 10+ 12 + 9 = 32 20




Example: Knapsack Problem

Upper = —32
Lower = —38

o

=)

Weight limit:
15 kgs

weight: 4
value: 10

Item A B C D
Value 10 10 12 18
Weight 2 4 6 9

Weight =2+ 6 =8 ; Weight =15—-8=7

Upper Bound = 10 + 12 = 22

8 X7

1
Lower Bound = 10+ 12 + 9 = 36 21




Example: Knapsack Problem

Upper = —32
Lower = —38

=

(=)

weight: 4
value: 10

=0
== el it: ight:
Ub =22 i P
= 72>
‘-.\11.,3’
weight: 6
XC value: 12
Item A B C D
Value -10 -10 -12 -18
Weight 2 4 6 9
Ub = —38 Weight =2 + 4 =6 ; Weight =15-6 =9
Lo =St Upper Bound = 10 + 10 = 20
8x%x9

= 38

1
Lower Bound = 10+ 10 + 9 29




Example: Knapsack Problem

Upper = —38 N ight: 4
Lower = —38 Lb = —38 r-.\ Valtie: 10
—0 (== =———J)-——\
= — Weight limit: ight: 9
b = 22 T | @
- 7z
\ 4
weight: 6
XC value: 12
Item A B C D
Value -10 -10 -12 -18
Weight 2 4 6 9
Ub = —38 Weight =24+4+9 =15 ; Weight =15-15=0
LIS e Upper Bound = 10 + 10 + 18 = 38
Optimal Solution 18 X9

38

Lower Bound = 10+ 10 + 9 = 23




Example: Knapsack Problem

Upper = —38 N ight: 4
Lower = —38 Lb = —38 i Valtie: 10
= | =

=0
Ub = -22 WQ‘I'%hlt(gllmlt: l'ght 198
s value:
Lb = —32

\ |1 v
| ‘3‘

\éf~ ’

value: 12
Item A B C D
Value -10 -10 -12 -18
Weight 2 4 6 9

Ub = —38 Ub = —20
Lb = —38 Lb = —-20

Optimal Solution

Ub = —32
Lb = —32



Branch and Bound + Simplex

= Branch and bound builds on the top of LP methods
* If the LP is infeasible (i.e., has no solution), then the IP is also infeasible
* |f the LP problem has an integer-valued optimal solution, then the solution
IS equal to the optimal solution for the IP problem.
* |f the LP problem has a non-integer-value, then the problem needs to be
decomposed

= Branch and bound uses 2 heuristics:

 The branch heuristic:

« Used to force the Simplex Method away from a non-integer valued
solution - Many different LP problems are generated in the process

* The bound heuristic:
« Used to limit the number of LP problems generated by the branch

heuristic
25



Branch and Bound + Simplex

10 Q *
—@— Constraint 2
9
3 —&@— Constraint 1
7
\\\5\
5 - No longer a feasible solution
a f(2.25,3.75) = 41.25
3
2
1
0 X1

o0 1 2 3 4 5 6 7 8 9 10

max( f(xq,x,) = 5x; + 8x,)
s. L. X1 + X9 <6

5X1 + 9X2 < 45

X1,X2 = 0 ,integer

= We can force Simplex Method
to avoid using x,=3.75

= The optimal integer
solution have be one of the
following:

X3, <3

X224

26



Branch and Bound + Simplex

max( f(xq,x,) = 5x; + 8x,)

103 _
—@— Constraint 2
9
2 —&@— Constraint 1 s. t. X1 +X, <6
7 5X1 + 9X2 < 45
. X1,Xp = 0 ,integer
5
g eMe = We can force Simplex Method
3 to avoid using xX,=3.75
2 = The optimal integer
solution have be one of the
1 following:
0
X9, <3
X2 > 4

27



Branch and Bound + Simplex

LP Relaxation:

max( f(xq,x,) = 5x4 + 8x,)
X1 +X, <56
5x4 + 9%, < 45
X1,X3 =0

xq = 2.25 Upper = inf
X, = 3.75 Lower = —41.25
= 41.25 Upper = —39
X2 = 4 X, < 3 Lower = —41
Upper = —39
X; = 1.8 X; =3 Lower = —40.55
X, =4 X; =3 Upper = —40
Z =41 Z =39 Lower = —40
wz 2 x
X =1 _
X, = 4.44 Infeasible
Z = 40.55
Xzy\xz >5 x
X{ = X, =
Xy, = Xy =
Z =37 Z =40

28



Dynamic Programming

Dynamic Programming (DP) is an algorithmic technique for solving an
optimization problem by breaking it down into simpler subproblems and utilizing
the fact that the optimal solution to the overall problem depends upon the optimal
solution to its subproblems.

DP relies on memoization (not memorization!) by storing past results and reusing
It SO as to not repeat expensive computation

Let us compute Fibonacci of 5 using DP

https://stemettes.org/zine/articles/fibonacci-in-nature/

29


https://stemettes.org/zine/articles/fibonacci-in-nature/

Example: Computing Fibonaccl Sequence

= |n mathematics, the Fibonacci numbers, commonly denoted f,,, form a sequence, called
the Fibonacci sequence, such that each number is the sum of the two preceding ones,
starting from O and 1.

J(n — fn—l T n—2

fo | h | f2 | f5 | fa | Js

30



Non-Linear Optimization

= Anon-linear program can have a linear or nonlinear objective function with

linear and/or nonlinear constraints 0
Optlmlze: maX(f(x:l’ xz) — 5 ln(Xl) _I_ 8 ln(XZ) %20 ® Tables ] ....'...0.
Constraints: X1 +X; <6 Example: Non-linear i ..::__..-...-----

viour due to S Y -
5x1 +9x, < 45 bi:;?\om"es of scale |
Xl’ X2 2 O’ lnteger i 5Numberoflghairsﬁablii v

= "Black Box" optimization refers to a problem setup in which an optimization

algorithm is supposed to optimize (e.g., minimize) an objective function
through a so-called black-box interface (simulation ; machine learning ; etc.)

Black Box Objective
(Simulator) Value

31
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Optimization Software

Source: Analysis of commercial and free and
open source solvers for linear optimization
problems B. Meindl and M. Templ

: Sc?aleg
Optimization Solver ; runring fime
= Gurobi
« Cplex Paid Software L
P Free Academic License i :
= Xpress ' JE.
= GLPK !
= LP SOLVE ; l .
= CLP Free Software | U-
m SCI P : Solvers
: Running times of several solvers applied to benchmark test data
= SoPlex |

33



Optimization Software

Optimization Solver Programming Language

= Gurobi - = Gurobi
| Paid Software
= Cplex | * IBM CPLEX gree Academic License
= Xpress - = Mosel
= GLPK i = GAMS
= LP_SOLVE i = AMPL Paid Software
= CLP | = AIMSS
= SCIP | = Pyomo - Python Free Software
= SoPlex —’Google OR Tools — Python,
| C++, Java
. = NEOS* Online Server

*https://neos-server.org/neos/ 34



https://neos-server.org/neos/

Pyomo Overview

= Pythonic framework for formulating optimization models
* Provide a natural syntax to describe mathematical models ‘ A
« Formulate large models with a concise syntax V PYDMD
« Separate modeling and data declarations
« Enable data import and export in commonly used formats

# simple.py
= Pyomo Documentation: from pyomo.environ import *
¢ onmo Documentatlon 6.1.2 M = Eﬂncpeteﬂndel(}

M.x1 = Var()

M.x2 = Var(bounds=(-1,1))

M.x3 = Var(bounds=(1,2))

M.o = Objective(

expr=M.x1**2 + (M.x2*M.x3)**4 + \

M.x1*M.x3 + \
M.x2*¥sin(M.x1+M.x3) + M.x2)

model = M

35


https://pyomo.readthedocs.io/en/stable/

Fundamental Pyomo Components

= Pyomo is an object model for describing optimization problems

------ Set
------ Set
______ Param @ > domai_'ﬂ
______ Var g"' 177 _'r" doma]_'[l
Model -{__bounds
______ V ar —f:“““- ~T domain
! bounds
------ Constraint ==y _ bounds
= expression

Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3 PyomoFundamentals.pdf

36


https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

A simple Pyomo Model

from pyomo.environ import *

= Rosenbrock.py
model = ConcreteModel()

model.x = Var( initialize=-1.2, bounds=(-2, 2) )
model.y = Var( initialize= 1.0, bounds=(-2, 2) )

model.obj = Objective(
expr= (1-model.x)**2 + 100*(model.y-model.x**2)**2,
sense= minimize )

Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3 PyomoFundamentals.pdf

37


https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

Getting Started: the Model

= Import pyomo environment and create model instance

from pyomo.environ import * <— Every Pyomo model starts

with this; it tells Python to

load the Pyomo Modeling
model = ConcreteModel() Environment

[ T

Create an instance of a Concrete model
* Concrete models are immediately constructed
* Data must be present at the time components
are defined

Local variable to hold the model we are about to construct
* While not required, by convention we use “mode1”
* If you choose to name your model something else,
you will need to tell the Pyomo script the object
name through the command line

Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3 PyomoFundamentals.pdf

38


https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

Modeling the Decision Variables

= Declare the decision variables

model.a_variable = Var(within = NonNegativeReals)

A A A
The name you assign the “within” is optional Several pre-
object to becomes the and sets the variable defined domains,
object’s name, and must be | | domain (“domain”isan | | e.g., “Binary”
unique in any given model. alias for “within”)

model.a_variable = Var(bounds = (@, None))
f)

Same as above: “domain” is assumed to be Reals if missing

Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3 PyomoFundamentals.pdf

39


https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

Modeling the Objective Function

= Formulate the objective function

model.x = Var( initialize=-1.2, bounds=(-2, 2) )
model.y = Var( initialize= 1.0, bounds=(-2, 2) )

model.obj = Objective(
> expr= (1l-model.x)**2 + 100*(model.y-model.x**2)**2,

sense= minimize ) T
If “sense” is omitted, Pyomo Note that the Objective expression
assumes minimization is not a relational expression

“expr” can be an expression,
— or any function-like object
that returns an expression

Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3 PyomoFundamentals.pdf

40


https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

Modeling the Constraints

= Formulate the model constraints

model.a = Var()
model.b = Var()
model.c = Var()
model.cl = Constraint(
expr = model.b + 5 * model.c <= model.a )
)

“expr” can be an expression,
or any function-like object
that returns an expression

Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3 PyomoFundamentals.pdf

41


https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

Modeling the Sets (Indices)

= Declare the sets of the decision variables and parameters

model.IDX = range(10)
model.a = Var()
model.b = Var(model.IDX)
model.cl = Constraint(
expr = sum(model.b[i] for 1 in model.IDX) <= model.a )

Python list comprehensions are
very common for working over Z h: < a
indexed variables and nicely t—
parallel mathematical notation: lEIDX

Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3 PyomoFundamentals.pdf

42
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Facllity Location Optimization Problem

= Location planning involves specifying the physical position of facilities that
provide demanded services.

« Urban and Regional Planning - location of schools, hospitals, bus stops, electric
charging stations, solid waste landfills, etc.

» Business Logistics and Supply Chains — location of industrial facilities,
warehouses, distribution centres, hubs, offices, etc.

» Defence and National Security — location of military bases, anti-missile systems,
fire watchtowers, etc.

« Electronics Industry- placement of interconnected electronic components onto
a printed circuit board or on a microchip

» Clustering technigues - cluster analysis problems can be viewed as facility
location problems. The objective is to partition data points into equivalence
classes such that points assigned ot the same class are close to one another

= There are a variety of different models to solve this problem (p-median
problem, quadratic assignment problem, capacitated location problem, etc.)

44



P-Median Formulation

[0 Sets

Set of candidate locations:i = 1,2, ...,1

Set of costumers:j =1,2,...,]

[l Parameters

dj = demand of costumer j
c;j = unit cost of satisfying customer j from facility i

p = number of locations to open

O Decision Variables

xij = 1if customer j is supplied by location i, 0 otherwise

y; = 1if a facility is located at location i, 0 otherwise

45



P-Median Formulation

min z = z z deinij

i€l jEJ

S.t. Zx,;j=1, V]E]

L€l

ZJ’i =D

LEI

X <Vi, Viel,j€]

Xij,Y; s binary

Minimize the demand-
weighted total cost

All of the demand for
customer | must be
satisfied

Exactly p facilities
are located

Demand nodes can only be
assigned to open facilities

All variables are binary
46



Pyomo P-Median Formulation

Inputs
100000 -

#Generate Data Inputs

# Select random seed Boo0o 4
random.seed(1)

# Number of candidate Locations

#n=160 BOO00 A
n=1000

#Number of Llocations to open 40000 4
openfac=38

#Coordinate Range
rangelct-188068 20000 -

#Generate random Locations
coordlct x = random.choices(range(@, rangelct), k=n)
coordlct_y = random.choices{range(®, rangelct), k=n) 0 1

20000 40000 60000 0000 100000

#Compute distance between Locations
distancelct=np.empty([n, n])
for i_index in range(n):
for j_index in range(n):
distancelct[i_index,j_index]=(math.sqrt((({coordlct x[i_index]-coordlct_x[j_index])**2) +((coordlct_y[i_index]-coordlct_y

df = pd.DataFrame{distancelct)
df.index += 1

df.columns += 1

cij model=df.stack().to dict()

#Generate demand between lLocations

demandlct = random.choices(range(l, 58), k=n)
demanddf = pd.DataFrame(demandlct)
demanddf.index += 1
dj_model=demanddf.to_dict()
dj_model=dj_model[@]

1 4

47



Pyomo P-Median Formulation

Sets

# Create Model

model = AbstractHodel() Set of candidate locations:i = 1,2, ...,

# Set of candidate locations

model.M = RangeSet(n) Set Of COStumeTS:j = 1’2’ ’]

# Set of customer nodes
model.N = RangeSet(n)

Parameters

o p = number of locations to open
# Number of facilities

model.p = openfac _ .
# d[j] - demand of customer j d] — demand Of COStumeT]

model.d = Param(model.N, initialize=dj_model)

# c[i,j] - unit cost of satisfying customer j from facility 1 Cij — unlt cost Of Satleylng CuStomeT’j
model.c = Param(model.M, model.N, initialize=cij model) i .
from facility i

Decision Variables

# x[1,7] - 1 if customer j is supplied by location i xij = 1 lf CuStOmeT] LS Supplled by

model.x = Var(model.M, model.N, within=Binary) location i’ O OtheTWise
# y[i] - a binary value that is 1 if a facility is located at location 1 i L. .
model.y = Var(model.M, within=Binary) yl - 1 lf a faClllty lS lOCated at

location i, 0 otherwise
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Pyomo P-Median Formulation

Objective Function

# Minimize the demand-weighted total cost

def cost (model): . _ E
return sum(model.d[j]*model.c[i,]j]*model.x[i,j] for i in model.M for j in model.N) min z = d]Cl]xl]

model.cost = Objective(rule=cost_)
Lel jej
Constraints

# ALL of the demand for customer j must be satisfied

def demand_(model, j): xij =1 ) vj € ]

return sum(model.x[i,j] for i in model.M) == 1.0
model.demand = Constraint(model.N, rule=demand )

# Exactly p facilities are located
def facilities (model): y = p
return sum(model.y[i] for i in model.M) == model.p l

model.facilities = Constraint(rule=facilities ) T

# Demand nodes can only be assigned to open facilities
def openfac (model, i, j):

return model.x[1i,]j] <= model.y[1i] xl] S yl ) Vi E I}j E ]

model.openfac = Constraint(model.M, model.N, rule=openfac )
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Pyomo P-Median Solve Model

Solve Model

instance = model.create instance()
opt = pyo.SolverFactory( ' gurobi')
opt.solve(instance, options={'TimelLimit': 10000},tee=True)

Solved with barrier
Root relaxation: objective 1.613801e+08, 30112 iterations, 157.47 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

4] @ 1.6138e+08 @ 538 2.3800e+08 1.6138e+08 32.2% - 180s
H %) %] 1.615296e+08 1.6138e+08 ©.09% - 182s
H %) (%] 1.613936e+08 1.6138e+08 ©.01% - 188s
Explored 1 nodes (38112 simplex iterations) in 188.72 seconds
Thread count was 4 (of 4 available processors)

Solution count 3: 1.61394e408 1.6153e408 2.37999%e408

Optimal solution found (tolerance 1.00e-04)
Best objective 1.613935998492e+08, best bound 1.613800660278e+08, gap ©.0084%
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Pyomo P-Median Outputs

100000 -
Read output variables
80000 -
xij dic = {i:int(value(j)) for (i,j) in instance.x.items()}
xij = pd.DataFrame(xij dic.values(), index = xij dic.keys()).unstack()
linkindex = np.where(xij == 1) 60000 A
Plot results 40000 A

def connectpoints(x,y,pl,p2):
x1, x2 = x[pl], x[p2] 20000 -
yl, y2 = y[pl], y[p2]
p1t°p10t([X1JX2]:[yl.iyz]:Ik'l)

for i_index in range(len(linkindex[@])): 01
connectpoints(coordlct x,coordlct y,linkindex[@][i index],linkindex[1][i_index]) 0 20600 40600 60600 80600 100b00

plt.plot(coordlct x, coordlct y, 'o', color="black');

yi dic = {i:int(value(j)) for (i,j) in instance.y.items()}

yi = pd.DataFrame(yi dic.values(), index = yi dic.keys()).unstack()
facilityindex = np.where(yi == 1)

for i_index in range(len(facilityindex[8])):
plt.plot(coordlct x[facilityindex[@][i_index]], coordlct y[facilityindex[@][i _index]], 'o', color="red');
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Travelling Salesman Problem

= The Traveling Salesman Problem is one of the most intensively studied
problems in computational mathematics.

= Given a collection of cities and the cost of travel between each pair of them,
the traveling salesman problem, or TSP for short, is to find the cheapest way
of visiting all of the cities and returning to your starting point.
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Travelling Salesman Problem

Much of the work on the TSP is motivated by its use as a platform for the

study of general methods that can be applied to a wide range of discrete

optimization problems. This is not to say, however, that the TSP does not
find applications in many fields.

The TSP naturally arises as a subproblem in many transportation and
logistics applications, for example the problem of arranging school bus
routes to pick up the children in a school district.

Other applications: scheduling of service calls at cable firms, the delivery
of meals to homebound persons, the scheduling of stacker cranes in
warehouses, the routing of trucks for parcel post pickup

Also: genome sequencing, NASA Starlight space interferometer program,
semi-conductor manufacturing, compute DNA sequences, fiber optical
networks, deliver power to electronic devices

https://www.math.uwaterloo.ca/tsp/apps/index.html
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Solving the Travelling Salesman Problem

R R T
N N ] ¥ 1 oo i 3 1 [

24 978 Cities in Sweden 15,112 Cities in Germany '35_9;]{]. Locations in a VLSI ﬁ;pplication
Solved in 2004 Solved in 2001 ' Solved in 2006

1954 1962 1977 1987 1987 1987 1994 1998 2001 2004
n=49 n=33 n=120 n=532 n=666  n=2392 n=7397 n=13509 n=15112 n=24978

https://www.math.uwaterloo.ca/tsp/apps/index.html
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Solving the Travelling Salesman Problem

Source: https://www.math.uwaterloo.ca/tsp/world/

= Size: 1,904,711-cities
= Best lower bound: 7,512,218,268 (June, 2007)
= Best solution: 7,515,755,956 (February, 2021) --- Gap 0.0471%
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TSP Formulation

[0 Sets

Set of cities tovisit:i = 1,2, ..., 1
[0 Parameters

c;j = distance fromiand j

O Decision Variables

x;; = 1if city j is visited right after city i,0 otherwise

u; = Auxiliary variable indicating tour ordering
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TSP Formulation

minz = z CijXij Minimize the total distance
[,jEI
S.t. z xij =1, Vi €1 There is only one departure
. from each city
JEI
] There is only one arrival to
xij =1, Vjel each city
LE]
Thereis only a
u;, —u; +nx; < (n—1 Vi,jel|2<i#j<n  Sihgletourcovering
l j Xy S ( ) J [2si#)< all cities, and not
n = card()) two or more

disjointed tours
Xij, IS binary



Pyomo TSP Formulation

Inputs

#Generate Data Inputs

# Select random seed
random.seed(1)

# Number of cities
n=160

#Coordinate Range
rangelct=160

#Generate random locations
coordlct x = random.choices({range(@, rangelct), k=n)
coordlct_y = random.choices{range(®, rangelct), k=n)

#lompute distance between Locations
distancelct=np.empty([n, n])
for i_index in range(n):

for j_index in range(n):

100 -
e
* 9
. ° °® e ® o
80 - : ° ™ ®ee
. o -
® . o 'I *
| ® ™
B0 o ® o, [ ]
e ® .
® ?. . e
] ™
40 ] » ®
™ ™
s . s L ¢ *
) ™
20 . % W o P .
e ® . e @
0 - . L] . L r
0 20 40 60 80 100

distancelct[i_index,j_index]=(math.sgrt(((coordlct x[i index]-coordlct x[j index])**2) +((coordlct y[i_index]-coordlct y

distancelct[np.diag_indices from(distancelct)] = 99999

df = pd.DataFrame(distancelct)
df.index += 1

df.columns += 1

cij model=df.stack().to dict()
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Pyomo TSP Formulation

Sets

# Create Model
model = AbstractModel()

# Set of cities to visit .y . P e, . .
model.N = RangeSet(n) Set of cities tovisit:i = 1,2, ..., 10

nodel.U= Rangeset(2,0)  Got of cities to visit w/o considering origin:i = 2,3, ...,
Parameters

# c[i,7] - distance from i and j Cij = distance from ] andj

model.c = Param(model.N, model.N, initialize=cij model)

Decision Variables

# xf1,7] - 1 if ecity 7 is visited right after city 1, @ otherwise
model.x = Var(model.N, model.N, withinzBinary) x;; = 1if city j is visited right after city i,0 otherwise

# ufi] - auxiliary variable indicating teur ordering

model.u = Var(model.N, within=Integers,bounds=(e,n))  U; = Auxiliary variable indicating tour ordering
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Pyomo TSP Formulation

Objective Function

# Minimize total distance
def cost (model): . _
return sum(model.c[1,j]*model.x[1,j] for 1 in model.N for j in model.N) min zZ = Cl]xl]

model.cost = Objective(rule=cost_ )

Constraints

# There is only one departure from each city

def arrive (model, j): ., — 1
return sum(model.x[1,j] for i in model.N if i!=j ) == 1 xl] 1 ’ v] E I

model.arrive = Constraint(model.N, rule=arrive ) icl

# There 1is only one arrival to each city
def depart (model, 1i):

return sum(model.x[1,j] for j in model.N if j!=i ) == 1 .. = 1 v' € I
model .depart = Constraint(model.N, rule=depart_) xl] ¢ l

# There is only a single tour covering all cities, and not two or more disjointed tours
def singletour (model,i,j):
if il=j:
return model.u[i] - model.u[j] + model.x[i,j] * n <= n-1 ul —_— u] -I— nxl] S (n —_— 1)

else:

return model.u[i] - model.u[j] == . s . .
t [1] (51 =0 WNVLJETNHN2Zi+#j<n

model .singletour = Constraint(model.U,model.N,rule=singletour_ ) 60



Pyomo TSP Formulation

instance = model.create _instance()

opt = pyo.SolverFactory('gurobi®)

opt.solve(instance, options={'Timelimit': 3600*500},tee=True) Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | 0Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

Root relaxation: objective 6.532166e+02, 355 iterations, ©.02 seconds

5] @ 653.21664 @ 195 4921.99604 653.21664 86.7% - Bs
5] @ 743.92129 @ 254 4921.99%6004 743.92129 84.9% - 1s
%] @ 743.95035 @ 271 4921.99004 743.95035 84.9% - 1s
5] @ 743.95035 @ 273 4921.990084 743.95035 84.9% - 1s
5] @ 751.98069 @ 243 4921.99604 751.90069 84.7% - 2s
5] @ 752.86238 @ 233 4921.99004 752.86330 84.7% - 25
%] @ 752.89659 @ 240 4921.99004 752.89659 84.7% - 2s
5] @ 752.89659 @ 240 4921.990084 752.89659 84.7% - 2s

969 603 809.00378 200 244 809.08378 775.49354 4.14% 31.4 110s

H 975 576 794.3991143 775.77367 2.34% 31.3 112s
098 592 794.39911 248 118 794.39911 775.86216 2.33% 39.9 115s

H 1877 64 792.4346674 776.39951 2.82% 44.2 119s
1288 648 789.86207 74 187 792.43467 776.59202 2.00% 42.8 120s
2661 443 cutoff 80 792.43467 779.77907 1.60% 48.2 125s

* 4316 300 76 786.7827327 784.41635 ©.30% 47.4 129s
4611 272 786.45151 88 62 786.78273 784.70306 ©.26% 46.0 138s

* 4716 230 72 785.9523981 784.75775 ©.15% 45.6 138s
* 4849 86 81 785.5122306 785.15006 0.85% 45.1 130s
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Pyomo TSP Outputs

Read output variables

xij dic = {i:int(np.round(value(j))) for (i,]j) in instance.x.items()}
xij = pd.DataFrame(xij_dic.values(), index = xij dic.keys()).unstack()
linkindex = np.where(xij == 1)

ui dic = {i:int(value(j)) for (i,j) in instance.u.items()}
ui = pd.DataFrame(ui_dic.values(), index = ui_dic.keys()).unstack()

sequence = np.where(ui == 1) 100 4
uidf=pd.DataFrame(ui)
uidf=uidf.sort_values(by=[0]) 80 -
pd.set_option('display.max_rows', uidf.shape[@]+1)
B -
40.
20 -
u.

T
100

&
3
&
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Vehicle Routing Problem

= In the Vehicle Routing Problem (VRP), the goal is to find optimal routes
for multiple vehicles visiting a set of locations. (When there's only one
vehicle, it reduces to the Travelling Salesman Problem)
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TSP Formulation

[0 Sets

Set of cities tovisit:i = 1,2, ..., 1

[0 Parameters

c;j = distance fromiand j

d; = demand of customer in city i

nvhc = number of vehicles

cvhc = vehicle capacity

[ Decision Variables
x;; = 1if city j is visited right after city i,0 otherwise

u; = Auxiliary variable indicating tour ordering
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VRP Formulation

minz = z CijXij

i,jEl
S.t. ZCijxij =1, Viel
JEI
zcijxij=1, V]EI
i€l
z Xpj =nvhc
JEl
z Xin =nvhc
i€l
u—u+nx; <(n—1)y;,
n=card(J]) Xij,is binary

Minimize the total distance

Each city there is a departure
to exactly one other city

Each city is arrived at
from exactly one other city

Only nvhc vehicles leave
the depot (last city)

Only nvhc vehicles return

to the depot (last city) All tours start

and end in the
Vi,jeEl|1<i#j<n-—1 depot(ie.no

3 subtours)
0 <u; <n, V,ji €1
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Pyomo VRP Formulation

#Generate Data Inputs

# Number of cities
n=28

# Number of Vehicles
nvhc=3

# Vehicle capacity
cvhec=230

#Coordinate Range
rangelct=16660

coordlct_x = random.sample(range(®, rangelct), n)

coordlct_y = random.sample(range(®, rangelct), n)

distancelctznp.empty([n, n])
for i_index in range(n}:
for j_index in range(n):

[ ]
800D -
[ ]
6000 1 . .
»
4000 4
2000 -
[
0 T T T T T
2000 4000 6000 8000 10000

distancelct[i index,j index]=(math.sqrt(((coordlct x[i_index]-coordlct x[j_index])**2) +({coordlct y[i_index]-coordlct_y

distancelct[np.diag_indices_from(distancelct)]

distancelctdf = pd.DataFrame(distancelct)
distancelctdf.index += 1
distancelctdf.columns += 1
cij_model=distancelctdf.stack().to dict()

cij_model

#Generate Demand

demandlct = random.sample(range(1, 58), n)
demanddf = pd.DataFrame(demandlct)
demanddf.index += 1
dj_model=demanddf.to dict()

dj_model=dj model[8]

99999
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Pyomo VRP Formulation

Sets

model = AbstractModel()
# Set of candidate cities

model.N = RangeSet(n)
model .M = RangeSet(n-1)

Parameters

# cfi,7] - distance from i and j
model.c = Param(model.N, model.N, initialize=cij_model)

# d[i] - demand of customer 3
model.d = Param{model.N, initialize=dj_model)

Decision Variables

# xf1,7] - 1 if city j is visited right after city i, @ otherwise
model.x = Var(model.N, model.N, within=Binary)

# ufi] - auxiliary variable indicating tour ordering
model.u = Var(model.N, withinz=NonNegativeReals)
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Pyomo VRP Formulation

Objective Function

# Minimize the demand-weighted total cost
def cost (model):

return sum(model.c[i,j]*model.x[i,j] for i in model.N for j in model.N)
model.cost = Objective(rule=zcost_)

Constraints

# Only 1 departs from each city
def departs_(model, j):

return sum(model.x[i,j] for i in model.N if il=j ) == 1
model.departs = Constraint(model.M, rule=departs )

# Only 1 arrives from each city
def arrives (model, i):

return sum(model.x[1,j] for j in model.N if ji=i ) == 1
model.arrives = Constraint({model.M, rule=zarrives_)

# Only nvhc vehicles arrive to the depot (city with index n)
def arrivesdepot_(model):

return sum(model.x[i,n] for i in model.N) == nvhc
model .departsdepot = Constraint(rulezarrivesdepot_)

# Only nvhe vehicles depart to the depot (city with index n)
def departdepot_(model):

return sum(model.x[n,j] for j in model.N) == nvhc
model.arrivesdepot = Constraint(rule=departdepot )

def singletour (model,i,j):
if 1!=3:
return model.u[i] - model.u[j] +cvhc*model.x[i,j] <= cvhc-model.d[i]
else:
return model.u[n]==

model.singletour = Constraint(model.M,model.M,rule=singletour_) ESEB



Pyomo VRP Formulation

Solve Model

instance = model.create_instance()
opt = pyo.SolverFactory('gurobi')
opt.solve(instance, options={'TimelLimit': 10000},tee=True)

1898828 119535 cutoft 48 58996.25@2 57755.5716 2.18% 10.2 558s -
1918185 114878 58376.2388 53 24 58996.2582 57796.2967 2.83% 18.2 555s
1936846 188579 cutoff (515 58996.25@2 57835.7144 1.97% 18.2 568s
1955533 1682859 58968.5048 52 22 58996.25682 57877.8488 1.9%98% 18.1 565s
1976102 96126 cutoff 58 LA996.2502 57926.6686 1.81% 18.1 578s
1993836 89929 L58775.7200 57 23 58996.2502 57970.7462 1.74% 18.1 575s
2009354 84243 cutoff a7 58996.2502 58011.68284 1.67% 18.1 580s
2823335 78812 infeasible 608 58996.2502 58051.1434 1.68% 18.1 585s
2036836 73501 58926.5236 49 15 58996.2502 58090.8971 1.53% 18.1 5%9@s
2049888 67946 58912.99608 61 12 58996.25@2 58135.4428 1.46% 18.1 595s
2863176 61976 infeasible 58 58996.2562 58181.1793 1.38% 18.1 660s
2877785 55886 cutoff 48 58996.2502 58237.1841 1.29% 18.1 6O5s
2090984 AB282 infeasible 69 L8996.2502 58295.4634 1.19% 16.6 6108s
2187788 38888 cutoff 51 58996.2502 58381.3247 1.84% 18.8 6H15s
2123286 29412 58612.6235 58 18 58996.25@2 58481.8104 @.87% 18.6 &208s
2136164 282081 cutoft 62 58996.2502 58594.4752 ©.68% 18.8 625s
2151717 7282 cutoff 67 5A996.2502 S8804.97668 0.32% 18.8 630s
Cutting planes: -

I mmsmemm A AL
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Pyomo VRP Formulation

Plot results

def connectpoints(x,y,pl,p2):
x1, x2 = x[pl], x[p2]
yl, y2 = y[pl], y[p2]
plt-plot([xj-,xz]J[3"113’2],Il'(_l)

for i_index in range(len(linkindex[8])):
connectpoints(coordlct_x,coordlct_y,linkindex[0][i_index],linkindex[1][i_index])

plt.plot(coordlct_x, coordlct_ y, 'o', color='black');

8000

4000

2000 +

2000 4000 6000 8000 10000
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Activity 1

= Consider the following problem: Given a
set of n packages with profit p; and
weight w; , and a set of m containers
with weight capacity c;, select m disjoint
subsets of packages so that the total
profit of the selected packages is
maximum, while ensuring the
containers’ capacity is never exceeded

= Exercise 1. Formulate the problem
mathematically

= EXxercise 2: Solve the problem using
pyomo (instances in the next slide)

~
o

e iy
o
N
\
\
\

Max 50 ton
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Activity 1 - Instances

= |nstance 1
random.seed(1)

n = 100 #number of objects
b= 5 #number of bins

cap=50

#Generate random locations
value = random.choices(range(10, 100), k=n)
weights = random.choices(range(5, 20), k=n)

= |nstance 2
random.seed(1)

n = 10000 #number of packages
m= 200 #number of containers

cap=50

#Generate random locations
profit = random.choices(range(10, 100), k=n)
weights = random.choices(range(5, 20), k=n)

/2



Happy Chinese New Year!

2022: HAPPY NEW YEAR : THE YEAR OF THE TIGER
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