
Exact Methods of Optimization

1

Nuno Antunes Ribeiro

Assistant Professor



2

▪ Optimize: max( 𝑓 𝑥1, 𝑥2 = 5x1 + 8x2)

▪ Constraints: x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

▪ The Carpenter Problem

• A carpenter can either make chairs or tables

• Chairs take 5 units of lumber, 1 day of labour, and the carpenter makes $500

• Tables take 9 units of lumber, 1 day of labour, and the carpenter makes $800

• 45 units of lumber available

• 6 days of labour available per week

How many chairs and tables to produce per week

x1, x2 ≥ 0

Optimization Problem



Linear Programming Model

3

max( 𝑓 𝑥1, 𝑥2 = 5x1 + 8x2)

x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

s. t.

Constraint 1

x1 x2

0 6

6 0

Constraint 2

x1 X2

9 0

0 5

Region of feasible 

solutions

𝟓𝐱𝟏 + 𝟖𝐱𝟐 = 𝒁

𝒇(𝟖, 𝟎) = 𝒇(𝟎, 𝟓) = 𝟒𝟎

Iso-value Line



Linear Programming Model

4

max( 𝑓 𝑥1, 𝑥2 = 5x1 + 8x2)

x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

s. t.

Constraint 1

x1 x2

0 6

6 0

Constraint 2

x1 X2

9 0

0 5

Region of feasible 

solutions

𝟓𝐱𝟏 + 𝟖𝐱𝟐 = 𝒁

𝒇(𝟎, 𝟎) = 𝟎



Linear Programming Model

5

max( 𝑓 𝑥1, 𝑥2 = 5x1 + 8x2)

x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

s. t.

Constraint 1

x1 x2

0 6

6 0

Constraint 2

x1 X2

9 0

0 5

Region of feasible 

solutions

𝟓𝐱𝟏 + 𝟖𝐱𝟐 = 𝒁

𝒇(𝟔, 𝟎) = 𝒇(𝟎, 𝟑. 𝟕𝟓) = 𝟑𝟎



Linear Programming Model

6

max( 𝑓 𝑥1, 𝑥2 = 5x1 + 8x2)

x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

s. t.

Constraint 1

x1 x2

0 6

6 0

Constraint 2

x1 X2

9 0

0 5

Region of feasible 

solutions

𝟓𝐱𝟏 + 𝟖𝐱𝟐 = 𝒁

𝒇(𝟖, 𝟎) = 𝒇(𝟎, 𝟓) = 𝟒𝟎



Linear Programming Model

7

max( 𝑓 𝑥1, 𝑥2 = 5x1 + 8x2)

x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

s. t.

Constraint 1

x1 x2

0 6

6 0

Constraint 2

x1 X2

9 0

0 5

Region of feasible 

solutions

𝟓𝐱𝟏 + 𝟖𝐱𝟐 = 𝒁

𝒇 𝟐. 𝟐𝟓, 𝟑. 𝟕𝟓 = 𝟒𝟏. 𝟐𝟓

𝑓𝑟𝑜𝑚 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 1; 𝑥2 = 6 − 𝑥1

𝑓𝑟𝑜𝑚 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 2; 𝑥2 =
45 − 9𝑥2

5

6 − 𝑥1 =
45 − 9𝑥2

5
⟺ 𝑥2 = 3.75 ; 𝑥1 = 2,25



Standard Linear Programming Model

8

𝑚𝑎𝑥 𝑧 = 𝑝1𝑥1 + 𝑝2𝑥2 +⋯+ 𝑝𝑖𝑥𝑖

𝑠. 𝑡. 𝑐11𝑥1 + 𝑐21𝑥2 +⋯+ 𝑐𝑖1𝑥𝑛 ≤𝑏1

𝑐12𝑥1 + 𝑐22𝑥2 +⋯+ 𝑐𝑖2𝑥𝑛 ≤𝑏2

…

𝑐1𝑗𝑥1 + 𝑐2𝑗𝑥2 +⋯+ 𝑐𝑖𝑗𝑥𝑖 ≤𝑏𝑗

𝑥1, 𝑥2, … , 𝑥𝑖 ≥ 0
Jobs

budget

profit

cost
Region of feasible 

solutions

Iso-value Line



▪ The simplex algorithm, created by the American 
mathematician George Dantzig in 1947, is a very 
popular algorithm for solving linear programs.

▪ The Simplex method uses row operations on matrices 
in Linear Algebra to find the optimal solution of an LP

• Start at a corner of the feasible region

• While there is an adjacent corner that is a better 
solution, move to that corner. 

• For “most” instances, the algorithm terminates (in a 
finite number of steps) at an optimal solution. 

Idea of Simplex Algorithm

9

Region of feasible 

solutions

https://sites.google.com/view/40-510/home

▪ Other more sophisticated methods have also been proposed to solve LP 
problems, such as the ellipsoid method or the barrier method

https://sites.google.com/view/40-510/home


Standard LP Model Formulation

10

□ Sets

𝑆𝑒𝑡 𝑜𝑓 𝐽𝑜𝑏𝑠: 𝑖 = 1,2, … , 𝑖

𝑆𝑒𝑡 𝑜𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑗 = 1,2, … , 𝑗

□ Parameters

𝑝𝑖 = 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑝𝑟𝑜𝑓𝑖𝑡 𝑜𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑜𝑛 𝑗𝑜𝑏 𝑖 (𝑝𝑟𝑜𝑓𝑖𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒)

𝑐𝑖𝑗 = 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑗𝑜𝑏 𝑖 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑗 (𝑒. 𝑔.𝑚𝑎𝑛𝑝𝑜𝑤𝑒𝑟, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠, 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦, 𝑒𝑡𝑐. )

𝑏𝑗 = 𝑏𝑢𝑑𝑔𝑒𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑗(𝑒. 𝑔. 𝑛𝑜. 𝑙𝑎𝑏𝑜𝑢𝑟𝑠, 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠, 𝑖𝑛𝑣. 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝑒𝑡𝑐. )

□ Decision Variables

𝑥𝑖 = 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑜𝑛 𝑗𝑜𝑏 𝑖



What if 𝒙𝒊 needs to be integer  

i.e. 𝑥𝑖 is the number of job i completions (e.g. number of chairs or tables? 

Standard LP Model Formulation

11

𝑚𝑎𝑥 𝑧 =෍

𝑖∈𝑁

𝑝𝑖𝑥𝑖

𝑠. 𝑡. ෍

𝑖∈𝑁

𝑐𝑖𝑗𝑥𝑖 ≤𝑏𝑗 , ∀𝑗 ∈ 𝑀

𝑥𝑖 ≥ 0, ∀𝑖 ∈ 𝑁

Maximize profits

Subject to budget 

constraints

I cannot spend 

negative time working 

on job i

Sum over all jobs

Sum over all jobs
For all constraints

For all jobs



Integer Programming Model

12

max( 𝑓 𝑥1, 𝑥2 = 5x1 + 8x2)

x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

𝐱𝟏, 𝐱𝟐 ≥ 𝟎 , 𝐢𝐧𝐭𝐞𝐠𝐞𝐫

s. t.

𝒇 𝟐. 𝟐𝟓, 𝟑. 𝟕𝟓 = 𝟒𝟏. 𝟐𝟓

No longer a feasible solution



Solving Discrete Optimization Problems

13

Exact Methods
Approximate 

Methods

Branch and X
Exhaustive 

Search

Backtracking

Other Methods

Dynamic 
Programming

Heuristics Meta-Heuristics

Single Solution
Population of 

Solution

Local Search
Simulated 
Annealing

Tabu Search
Evolutionary 
Algorithms

Swarm Search

Today’s class! All the other 
classes!



▪ Exhaustive Search is the simplest of the algorithms. It 
examines every possible combination of permitted levels of 
all attributes.

▪ Exhaustive Search is very ineffective and mostly unusable 
for a real-world problem due to time limitations

▪ Solutions are generally represented in a search space tree

Exaustive Search

14

R B G Y

Solution Space = 𝒏!

𝟒! = 𝟐4

R B G Y

B G Y

G Y B Y B G

R G Y R B Y R B G

G Y R Y GR B Y R Y R B B G R G R B

Y G Y B G B Y G RY G R BY RY RB G B RG RB



R B G Y

B G Y

G Y B Y

R G Y R B Y R B G

G Y R Y GR B Y R Y R B R G R B

Y G Y B Y RY R Y RY R RG RB

▪ Backtracking is an algorithmic technique where the goal is to get 
one or multiple solutions to a problem.

▪ Backtracking depth-searches for solutions and then backtracks to 
the most recent valid path as soon as an end node is reached (i.e., 
we can proceed no further).

▪ It is eventually faster than exhaustive search since the search 
space tree is cut whenever a bounding constraint is violated

Backtracking

15

R B G Y

Solution Space = 𝒏!

Bounding Constraint
Yellow and red cannot 

be adjacent colours

12 feasible 
solutions



8

9 3 11 514

▪ Subset sum problem is to find subset of elements that are 
selected from a given set with 𝑛 elements whose sum 
adds up to a given number 𝑚. 

▪ We are considering the set contains non-negative values. 
It is assumed that the input set is unique (no duplicates 
are presented).

Example: Sum of Subsets Problem

16

W 1: n = {3,5,6,7}

Solution Space = 𝟐𝐧 = 𝟏𝟔

𝑚 = 15

with 3 w/o 3

with 5 w/o 5 with 5 w/o 5

with 6 w/o 6 with 6 w/o 6
with 6 w/o 6

with 7 w/o 7

3

8

8

15

3 5 0

0

0

14+7>15

8<15

9+7>15 3+7<15

11+7>15
5+7<15

0+13<15

1 feasible 
solutions

Applications (e.g. computer passwords): 
http://www.math.stonybrook.edu/~scott/
blair/Other_uses_subset_sum.html

http://www.math.stonybrook.edu/~scott/blair/Other_uses_subset_sum.html


▪ Rely on two subroutines that (efficiently) compute a lower and an upper bound 
on the optimal value

• upper bound can be found by choosing any point in the region, or by a local 
optimization method 

• lower bound can be found from by applying some relaxation techniques (e.g. 
LP relaxation)

Branch and Bound

17

▪ Definitions

• Upper bound: a feasible solution

• Lower bound: a solution to an “easier” 
problem

• Node elimination: (fathom nodes): 
when lower bound >= upper bound

▪ Branch and Bound assumes we are solving 
minimization problems



18

Example: Knapsack Problem

Item A B C D

Value 10 10 12 18

Weight 2 4 6 9

A

B

C

D

Item A B C D

Value -10 -10 -12 -18

Weight 2 4 6 9



19

Example: Knapsack Problem

Item A B C D

Value 10 10 12 18

Weight 2 4 6 9

A

B

C

D

Pick a random initial feasible solution
ABC

Upper Bound = 10 + 10 + 12 = 32
(best you could achieve so far)

Lower Bound= ?
(best you could achieve in theory)

𝑉𝑎𝑙𝑢𝑒 = 10 + 10 + 12 = 32

𝑊𝑒𝑖𝑔ℎ𝑡 = 2 + 4 + 6 = 12

Let’s imagine you could bring a 
portion of item D. What would be 
the portion to add to solution ABC

𝑊𝑒𝑖𝑔ℎ𝑡 = 2 + 4 + 6 = 12 + 3 = 15
𝑃𝑜𝑟𝑡𝑖𝑜𝑛 = 3 ÷ 9
𝑉𝑎𝑙𝑢𝑒 = 10 + 10 + 12 + 18 × 3 ÷ 9 = 𝟑𝟖

Item A B C D

Value -10 -10 -12 -18

Weight 2 4 6 9



20

Example: Knapsack Problem

Item A B C D

Value -10 -10 -12 -18

Weight 2 4 6 9

A

B

C

D

𝑋𝐴 = 1 𝑋𝐴 = 0

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −22
𝐿𝑏 = −32

Upper Bound = 10 + 12 = 𝟐𝟐

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 10 + 12 +
18 × 5

9
= 𝟑2

Weight = 4 + 6 = 10 ; Weight = 15 − 10 = 5

𝑈𝑝𝑝𝑒𝑟 = −32
𝐿𝑜𝑤𝑒𝑟 = −38



21

Example: Knapsack Problem

Item A B C D

Value 10 10 12 18

Weight 2 4 6 9

A

B

C

D

𝑋𝐴 = 1 𝑋𝐴 = 0

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −22
𝐿𝑏 = −32

Upper Bound = 10 + 12 = 𝟐𝟐

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 10 + 12 +
18 × 7

9
= 𝟑𝟔

Weight = 2 + 6 = 8 ; Weight = 15 − 8 = 7

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑋𝐵 = 1 𝑋𝐵 = 0

𝑈𝑏 = −22
𝐿𝑏 = −36

𝑈𝑝𝑝𝑒𝑟 = −32
𝐿𝑜𝑤𝑒𝑟 = −38



22

Example: Knapsack Problem

Item A B C D

Value -10 -10 -12 -18

Weight 2 4 6 9

A

B

C

D

𝑋𝐴 = 1 𝑋𝐴 = 0

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −22
𝐿𝑏 = −32

Upper Bound = 10 + 10 = 𝟐𝟎

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 10 + 10 +
18 × 9

9
= 𝟑𝟖

Weight = 2 + 4 =6  ; Weight = 15 − 6 = 9

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑋𝐵 = 1 𝑋𝐵 = 0

𝑈𝑏 = −22
𝐿𝑏 = −36

𝑋𝐶 = 1 𝑋𝐶 = 0

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −20
𝐿𝑏 = −38

𝑈𝑝𝑝𝑒𝑟 = −32
𝐿𝑜𝑤𝑒𝑟 = −38

𝑋𝐷 =1

𝑈𝑏 = −38
𝐿𝑏 = −38



23

Example: Knapsack Problem

Item A B C D

Value -10 -10 -12 -18

Weight 2 4 6 9

A

B

C

D

𝑋𝐴 = 1 𝑋𝐴 = 0

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −22
𝐿𝑏 = −32

Upper Bound = 10 + 10 + 18 = 𝟑𝟖

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 10 + 10 +
18 × 9

9
= 𝟑𝟖

Weight = 2 + 4 + 9 = 15 ; Weight = 15 − 15 = 0

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑋𝐵 = 1 𝑋𝐵 = 0

𝑈𝑏 = −22
𝐿𝑏 = −36

𝑋𝐶 = 1 𝑋𝐶 = 0

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −20
𝐿𝑏 = −38

𝑋𝐷 =1

𝑈𝑏 = −38
𝐿𝑏 = −38

Optimal Solution

𝑈𝑝𝑝𝑒𝑟 = −38
𝐿𝑜𝑤𝑒𝑟 = −38



24

Example: Knapsack Problem

Item A B C D

Value -10 -10 -12 -18

Weight 2 4 6 9

A

B

C

D

𝑋𝐴 = 1 𝑋𝐴 = 0

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −22
𝐿𝑏 = −32

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑋𝐵 = 1 𝑋𝐵 = 0

𝑈𝑏 = −22
𝐿𝑏 = −36

𝑋𝐶 = 1 𝑋𝐶 = 0

𝑈𝑏 = −32
𝐿𝑏 = −38

𝑈𝑏 = −20
𝐿𝑏 = −38

𝑋𝐷 =1

𝑈𝑏 = −38
𝐿𝑏 = −38

𝑋𝐷 =0

𝑈𝑏 = −20
𝐿𝑏 = −20

𝑈𝑏 = −32
𝐿𝑏 = −32

𝑈𝑝𝑝𝑒𝑟 = −38
𝐿𝑜𝑤𝑒𝑟 = −38

Optimal Solution



▪ Branch and bound builds on the top of LP methods

• If the LP is infeasible (i.e., has no solution), then the IP is also infeasible

• If the LP problem has an integer-valued optimal solution, then the solution 
is equal to the optimal solution for the IP problem.

• If the LP problem has a non-integer-value, then the problem needs to be 
decomposed

▪ Branch and bound uses 2 heuristics:

• The branch heuristic:

• Used to force the Simplex Method away from a non-integer valued 
solution - Many different LP problems are generated in the process 

• The bound heuristic:

• Used to limit the number of LP problems generated by the branch 
heuristic

25

Branch and Bound + Simplex



Branch and Bound + Simplex

26

max( 𝑓 𝑥1, 𝑥2 = 5x1 + 8x2)

x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

𝐱𝟏, 𝐱𝟐 ≥ 𝟎 , 𝐢𝐧𝐭𝐞𝐠𝐞𝐫

s. t.

𝒇 𝟐. 𝟐𝟓, 𝟑. 𝟕𝟓 = 𝟒𝟏. 𝟐𝟓

No longer a feasible solution

▪ We can force Simplex Method 
to avoid using 𝐱𝟐=3.75

▪ The optimal integer 
solution have be one of the 
following:

𝐱𝟐, ≤ 𝟑

𝐱𝟐 ≥ 𝟒



Branch and Bound + Simplex

27

max( 𝑓 𝑥1, 𝑥2 = 5x1 + 8x2)

x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

𝐱𝟏, 𝐱𝟐 ≥ 𝟎 , 𝐢𝐧𝐭𝐞𝐠𝐞𝐫

s. t.

▪ We can force Simplex Method 
to avoid using 𝐱𝟐=3.75

▪ The optimal integer 
solution have be one of the 
following:

𝐱𝟐, ≤ 𝟑

𝐱𝟐 ≥ 𝟒

Subproblem 2

Subproblem 1

𝒇 𝟏. 𝟖, 𝟒 = 𝟒𝟏

𝒇 𝟒, 𝟒 = 𝟑𝟗



Branch and Bound + Simplex

28

LP Relaxation:

max( 𝑓 𝑥1, 𝑥2 = 5x1 + 8x2)
x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45
x1, x2 ≥ 0 x2 ≤ 3

x2 ≥ 4

x1 ≤ 1 x1 ≥ 2

x2 ≤ 4 x2 ≥ 5

x1 = 1
x2 = 4
𝑍 = 37

x1 = 1
x2 = 4.44
𝑍 = 40.55

x1 = 0
x2 = 5
𝑍 = 40

x1 = 1.8
x2 = 4
𝑍 = 41

𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

x1 = 3
x2 = 3
𝑍 = 39

x1 = 2.25
x2 = 3.75
= 41.25

𝑈𝑝𝑝𝑒𝑟 = 𝑖𝑛𝑓
𝐿𝑜𝑤𝑒𝑟 = −41.25

𝑈𝑝𝑝𝑒𝑟 = −39
𝐿𝑜𝑤𝑒𝑟 = −41

𝑈𝑝𝑝𝑒𝑟 = −39
𝐿𝑜𝑤𝑒𝑟 = −40.55

𝑈𝑝𝑝𝑒𝑟 = −40
𝐿𝑜𝑤𝑒𝑟 = −40



▪ Dynamic Programming (DP) is an algorithmic technique for solving an 
optimization problem by breaking it down into simpler subproblems and utilizing 
the fact that the optimal solution to the overall problem depends upon the optimal 
solution to its subproblems.

▪ DP relies on memoization (not memorization!) by storing past results and reusing 
it so as to not repeat expensive computation

▪ Let us compute Fibonacci of 5 using DP

Dynamic Programming

29https://stemettes.org/zine/articles/fibonacci-in-nature/

https://stemettes.org/zine/articles/fibonacci-in-nature/


▪ In mathematics, the Fibonacci numbers, commonly denoted 𝑓𝑛, form a sequence, called 
the Fibonacci sequence, such that each number is the sum of the two preceding ones, 
starting from 0 and 1.

Example: Computing Fibonacci Sequence

30

𝑓5

𝑓4 𝑓3

𝑓3 𝑓2

𝑓0 𝑓1𝑓2 𝑓1

𝑓0 𝑓1

𝑓2 𝑓1

𝑓0 𝑓1

𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

-1 -1 -1 -1 -1 -10 1 1 2 3 5

0 1

1 1 10 01

1 1 12

23

5



▪ A non-linear program can have a linear or nonlinear objective function with 
linear and/or nonlinear constraints

Non-Linear Optimization

31

Black Box
(Simulator)

Decisions
Objective 

Value

Optimize:

Constraints:

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0, integer

x1 + x2 ≤ 6

max( 𝑓 𝑥1, 𝑥2 = 5 ln(x1) + 8 ln(x2)

▪ "Black Box" optimization refers to a problem setup in which an optimization 
algorithm is supposed to optimize (e.g., minimize) an objective function 
through a so-called black-box interface (simulation ; machine learning ; etc.)



Optimization Software

32

Nuno Antunes Ribeiro

Assistant Professor



33

Optimization Software

Optimization Solver

▪ Gurobi

▪ Cplex

▪ Xpress

▪ GLPK

▪ LP_SOLVE

▪ CLP

▪ SCIP

▪ SoPlex

Paid Software
Free Academic License

Free Software

Source: Analysis of commercial and free and 
open source solvers for linear optimization 
problems B. Meindl and M. Templ



34

Optimization Software

Optimization Solver

▪ Gurobi

▪ Cplex

▪ Xpress

▪ GLPK

▪ LP_SOLVE

▪ CLP

▪ SCIP

▪ SoPlex

Programming Language

▪ Gurobi

▪ IBM CPLEX

▪ Mosel

▪ GAMS

▪ AMPL

▪ AIMSS

▪ Pyomo - Python

▪ Google OR Tools – Python, 
C++, Java

▪ NEOS*

Paid Software
Free Academic License

Paid Software

Free Software

Online Server
*https://neos-server.org/neos/

https://neos-server.org/neos/


▪ Pythonic framework for formulating optimization models

• Provide a natural syntax to describe mathematical models

• Formulate large models with a concise syntax

• Separate modeling and data declarations

• Enable data import and export in commonly used formats

▪ Pyomo Documentation:

• Pyomo Documentation 6.1.2

Pyomo Overview

35

https://pyomo.readthedocs.io/en/stable/


▪ Pyomo is an object model for describing optimization problems

Fundamental Pyomo Components

36
Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf


A simple Pyomo Model

37

▪ Rosenbrock.py

Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf


▪ Import pyomo environment and create model instance

Getting Started: the Model

38
Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf


▪ Declare the decision variables

Modeling the Decision Variables

39
Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf


▪ Formulate the objective function

Modeling the Objective Function

40
Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf


▪ Formulate the model constraints

Modeling the Constraints

41
Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf


▪ Declare the sets of the decision variables and parameters

Modeling the Sets (Indices)

42
Source: https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf

https://www.ima.umn.edu/materials/2017-2018.2/W8.21-25.17/26326/3_PyomoFundamentals.pdf


Solving Optimization Problems using Pyomo

43

Nuno Antunes Ribeiro

Assistant Professor



▪ Location planning involves specifying the physical position of facilities that 
provide demanded services.

• Urban and Regional Planning - location of schools, hospitals, bus stops, electric 
charging stations, solid waste landfills, etc.

• Business Logistics and Supply Chains – location of industrial facilities, 
warehouses, distribution centres, hubs, offices, etc.

• Defence and National Security – location of military bases, anti-missile systems, 
fire watchtowers, etc.

• Electronics Industry- placement of interconnected electronic components onto 
a printed circuit board or on a microchip

• Clustering techniques - cluster analysis problems can be viewed as facility 
location problems. The objective is to partition data points into equivalence 
classes such that points assigned ot the same class are close to one another

▪ There are a variety of different models to solve this problem (p-median 
problem, quadratic assignment problem, capacitated location problem, etc.)

Facility Location Optimization Problem

44



P-Median Formulation

45

□ Sets

𝑆𝑒𝑡 𝑜𝑓𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠: 𝑖 = 1,2, … , 𝑖

𝑆𝑒𝑡 𝑜𝑓 𝑐𝑜𝑠𝑡𝑢𝑚𝑒𝑟𝑠: 𝑗 = 1,2, … , 𝑗

□ Parameters

𝑑𝑗 = 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑐𝑜𝑠𝑡𝑢𝑚𝑒𝑟 𝑗

𝑐𝑖𝑗 = 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑖

□ Decision Variables

𝑥𝑖𝑗 = 1 𝑖𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 𝑖𝑠 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑦𝑖 = 1 𝑖𝑓 𝑎 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑝 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑜𝑝𝑒𝑛



P-Median Formulation

46

𝑚𝑖𝑛 𝑧 =෍

𝑖∈𝐼

෍

𝑗∈𝐽

𝑑𝑗𝑐𝑖𝑗𝑥𝑖𝑗

𝑠. 𝑡. ෍

𝑖∈𝐼

𝑥𝑖𝑗 =1 , ∀𝑗 ∈ 𝐽

𝑥𝑖𝑗 , 𝑦𝑖 𝑖𝑠 𝑏𝑖𝑛𝑎𝑟𝑦

Minimize the demand-

weighted total cost

All of the demand for 

customer j must be 

satisfied

All variables are binary

෍

𝑖∈𝐼

𝑦𝑖 =𝑝 Exactly p facilities 

are located

𝑥𝑖𝑗 ≤𝑦𝑖 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 Demand nodes can only be 

assigned to open facilities 



Pyomo P-Median Formulation

47



48

Pyomo P-Median Formulation

𝑆𝑒𝑡 𝑜𝑓𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠: 𝑖 = 1,2, … , 𝑖

𝑆𝑒𝑡 𝑜𝑓 𝑐𝑜𝑠𝑡𝑢𝑚𝑒𝑟𝑠: 𝑗 = 1,2, … , 𝑗

𝑑𝑗 = 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑐𝑜𝑠𝑡𝑢𝑚𝑒𝑟 𝑗

𝑐𝑖𝑗 = 𝑢𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗

𝑓𝑟𝑜𝑚 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑖

𝑝 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑜𝑝𝑒𝑛

𝑥𝑖𝑗 = 1 𝑖𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗 𝑖𝑠 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑦

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑦𝑖 = 1 𝑖𝑓 𝑎 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑎𝑡
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



49

Pyomo P-Median Formulation

𝑚𝑖𝑛 𝑧 =෍

𝑖∈𝐼

෍

𝑗∈𝐽

𝑑𝑗𝑐𝑖𝑗𝑥𝑖𝑗

෍

𝑖∈𝐼

𝑥𝑖𝑗 =1 , ∀𝑗 ∈ 𝐽

෍

𝑖∈𝐼

𝑦𝑖 =𝑝

𝑥𝑖𝑗 ≤𝑦𝑖 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽



50

Pyomo P-Median Solve Model



51

Pyomo P-Median Outputs



▪ The Traveling Salesman Problem is one of the most intensively studied 
problems in computational mathematics.

▪ Given a collection of cities and the cost of travel between each pair of them, 
the traveling salesman problem, or TSP for short, is to find the cheapest way 
of visiting all of the cities and returning to your starting point. 

Travelling Salesman Problem

52



▪ Much of the work on the TSP is motivated by its use as a platform for the 
study of general methods that can be applied to a wide range of discrete 
optimization problems.  This is not to say, however, that the TSP does not 
find applications in many fields.

▪ The TSP naturally arises as a subproblem in many transportation and 
logistics applications, for example the problem of arranging school bus 
routes to pick up the children in a school district.

▪ Other applications: scheduling of service calls at cable firms, the delivery 
of meals to homebound persons,  the scheduling of stacker cranes in 
warehouses,  the routing of trucks for parcel post pickup

▪ Also: genome sequencing, NASA Starlight space interferometer program, 
semi-conductor manufacturing, compute DNA sequences, fiber optical 
networks, deliver power to electronic devices 

▪ https://www.math.uwaterloo.ca/tsp/apps/index.html

Travelling Salesman Problem

53

https://www.math.uwaterloo.ca/tsp/apps/index.html


Solving the Travelling Salesman Problem

54
https://www.math.uwaterloo.ca/tsp/apps/index.html

https://www.math.uwaterloo.ca/tsp/apps/index.html


Solving the Travelling Salesman Problem

55

▪ Size: 1,904,711-cities

▪ Best lower bound: 7,512,218,268 (June, 2007)

▪ Best solution: 7,515,755,956 (February, 2021) --- Gap 0.0471%

Source: https://www.math.uwaterloo.ca/tsp/world/

https://www.math.uwaterloo.ca/tsp/world/


TSP Formulation

56

□ Sets

𝑆𝑒𝑡 𝑜𝑓 𝑐𝑖𝑡𝑖𝑒𝑠 𝑡𝑜 𝑣𝑖𝑠𝑖𝑡: 𝑖 = 1,2, … , 𝑖

□ Parameters

𝑐𝑖𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑖 𝑎𝑛𝑑 𝑗

□ Decision Variables

𝑥𝑖𝑗 = 1 𝑖𝑓 𝑐𝑖𝑡𝑦 𝑗 𝑖𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑟𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 𝑐𝑖𝑡𝑦 𝑖, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑢𝑖 = 𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑡𝑜𝑢𝑟 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔



TSP Formulation

57

𝑚𝑖𝑛 𝑧 = ෍

𝑖,𝑗∈𝐼

𝑐𝑖𝑗𝑥𝑖𝑗

𝑠. 𝑡. ෍

𝑗∈𝐼

𝑥𝑖𝑗 =1 , ∀𝑖 ∈ 𝐼

𝑥𝑖𝑗 , 𝑖𝑠 𝑏𝑖𝑛𝑎𝑟𝑦

Minimize the total distance

There is only one departure 

from each city

There is only one arrival to 

each city

𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ (𝑛 − 1) , ∀𝑖, 𝑗 ∈ 𝐼 | 2 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛

There is only a 

single tour covering 

all cities, and not 

two or more 

disjointed tours

෍

𝑖∈𝐼

𝑥𝑖𝑗 =1 , ∀𝑗 ∈ 𝐼

𝑛 =𝑐𝑎𝑟𝑑 𝐽

0 ≤ 𝑢𝑖 ≤ 𝑛, ∀𝑖 ∈ 𝐼



Pyomo TSP Formulation

58



Pyomo TSP Formulation

59

𝑆𝑒𝑡 𝑜𝑓 𝑐𝑖𝑡𝑖𝑒𝑠 𝑡𝑜 𝑣𝑖𝑠𝑖𝑡: 𝑖 = 1,2, … , 𝑖
𝑆𝑒𝑡 𝑜𝑓 𝑐𝑖𝑡𝑖𝑒𝑠 𝑡𝑜 𝑣𝑖𝑠𝑖𝑡 Τ𝑤 𝑜 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑜𝑟𝑖𝑔𝑖𝑛: 𝑖 = 2,3, … , 𝑖

𝑐𝑖𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑖 𝑎𝑛𝑑 𝑗

𝑥𝑖𝑗 = 1 𝑖𝑓 𝑐𝑖𝑡𝑦 𝑗 𝑖𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑟𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 𝑐𝑖𝑡𝑦 𝑖, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑢𝑖 = 𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑡𝑜𝑢𝑟 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔



Pyomo TSP Formulation

60

𝑚𝑖𝑛 𝑧 = ෍

𝑖,𝑗∈𝐼

𝑐𝑖𝑗𝑥𝑖𝑗

෍

𝑗∈𝐼

𝑥𝑖𝑗 =1 , ∀𝑖 ∈ 𝐼

෍

𝑖∈𝐼

𝑥𝑖𝑗 =1 , ∀𝑗 ∈ 𝐼

𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ (𝑛 − 1)

, ∀𝑖, 𝑗 ∈ 𝐼 | 2 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛



Pyomo TSP Formulation

61



Pyomo TSP Outputs

62



▪ In the Vehicle Routing Problem (VRP), the goal is to find optimal routes 
for multiple vehicles visiting a set of locations. (When there's only one 
vehicle, it reduces to the Travelling Salesman Problem)

Vehicle Routing Problem

63



TSP Formulation

64

□ Sets

𝑆𝑒𝑡 𝑜𝑓 𝑐𝑖𝑡𝑖𝑒𝑠 𝑡𝑜 𝑣𝑖𝑠𝑖𝑡: 𝑖 = 1,2, … , 𝑖

□ Parameters

𝑐𝑖𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑖 𝑎𝑛𝑑 𝑗

□ Decision Variables

𝑥𝑖𝑗 = 1 𝑖𝑓 𝑐𝑖𝑡𝑦 𝑗 𝑖𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑟𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 𝑐𝑖𝑡𝑦 𝑖, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑢𝑖 = 𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑡𝑜𝑢𝑟 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔

𝑑𝑖 = 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖𝑛 𝑐𝑖𝑡𝑦 i

𝑛𝑣ℎ𝑐 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

𝑐𝑣ℎ𝑐 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦



VRP Formulation

65

𝑚𝑖𝑛 𝑧 = ෍

𝑖,𝑗∈𝐼

𝑐𝑖𝑗𝑥𝑖𝑗

𝑠. 𝑡. ෍

𝑗∈𝐼

𝑐𝑖𝑗𝑥𝑖𝑗 =1 , ∀𝑖 ∈ 𝐼

𝑥𝑖𝑗 , 𝑖𝑠 𝑏𝑖𝑛𝑎𝑟𝑦

Minimize the total distance

Each city there is a departure 

to exactly one other city

Each city is arrived at 

from exactly one other city

𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ (𝑛 − 1) 𝑦𝑖 , ∀𝑖, 𝑗 ∈ 𝐼 | 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛 − 1

All tours start 

and end in the 

depot (i.e. no 

subtours)

෍

𝑖∈𝐼

𝑐𝑖𝑗𝑥𝑖𝑗 =1 , ∀𝑗 ∈ 𝐼

𝑛 =𝑐𝑎𝑟𝑑 𝐽 0 ≤ 𝑢𝑖 ≤ 𝑛, ∀, 𝑗𝑖 ∈ 𝐼

෍

𝑗∈𝐼

𝑥𝑛𝑗 =𝑛𝑣ℎ𝑐

෍

𝑖∈𝐼

𝑥𝑖𝑛 =𝑛𝑣ℎ𝑐

Only nvhc vehicles leave 

the depot (last city)

Only nvhc vehicles return 

to the depot (last city)



Pyomo VRP Formulation

66



67

Pyomo VRP Formulation



68

Pyomo VRP Formulation



69

Pyomo VRP Formulation



70

Pyomo VRP Formulation



▪ Consider the following problem: Given a 
set of 𝑛 packages with profit 𝑝𝑗 and 
weight 𝑤𝑗 , and a set of 𝑚 containers 
with weight capacity 𝑐𝑖, select 𝑚 disjoint 
subsets of packages so that the total 
profit of the selected packages is 
maximum, while ensuring the 
containers’ capacity is never exceeded

▪ Exercise 1: Formulate the problem 
mathematically

▪ Exercise 2: Solve the problem using 
pyomo (instances in the next slide)

Activity 1

71

Max 50 ton



▪ Instance 1

random.seed(1)

n = 100 #number of objects

b= 5 #number of bins

cap=50

#Generate random locations

value = random.choices(range(10, 100), k=n)

weights = random.choices(range(5, 20), k=n)

Activity 1 - Instances

72

▪ Instance 2

random.seed(1)

n = 10000 #number of packages

m= 200 #number of containers

cap=50

#Generate random locations

profit = random.choices(range(10, 100), k=n)

weights = random.choices(range(5, 20), k=n)



Happy Chinese New Year!

73


