
Random Sampling

1

Nuno Antunes Ribeiro

Assistant Professor

▪ Exhaustive search methods are ineffective when solving very large
optimization problems

▪ Exact methods of Optimization solve complex problems without the
need to exhaustively search for all possible solutions of a problem. These
methos ensure that the solution obtained is the optimal one.

▪ Several exact methods of optimization in the previous lecture (Simplex ;
Branch and Bound; Dynamic Programming ; etc)

▪ However, as the size of your problem grows, the computation
requirements to solve optimization increases considerably.

▪ In many instance, the solution space for solutions is so large that exact
methods of optimization cannot even find feasible solutions for a problem.

▪ In those situations using exact methods of optimization is impractical

2

Optimization Methods

3

Exact Methods - CPU Performance

P-Median Travelling Salesman Vehicle Routing

n Fac. CPU Time Opt. Value n CPU Time Opt. Value n Veh. Cap. CPU Time Opt. Value

10 1 0.12 s 8061276 10 1.29 s 34993 10 2 180 1.22 32846

20 3 0.16 9814108 20 20 3 230 697 58996

25 4 0.14 s 9359061 25 1.21 s 39224 25 4 250 >6000
64362

(11.2%)

50 8 0.17 s 9870230 50 49 s 57546 - - - - -

75 12 0.25 s 15617651 75 91 s 70395 - - - - -

100 15 0.32 s 18954163 100 178 s 78357 - - - - -

200 20 1.25 s 35825600 200 2625 s 105404 - - - - -

500 30 11.18 s 74794047 500 >6000 s
220704
(25.9%)

- - - - -

1000 30 147.61 s 161388969 - - - - - - - -

5000 100 >6000
No Solution

Found
- - - - - - - -

▪ The most “naïve” metaheuristic approach consists on randomly sampling
solutions from the solution space.

1. Initialize: Generate random initial solution, 𝑝𝑏𝑒𝑠𝑡 = 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2. While (termination criteria is not met, e.g. CPU time)

3. Create random candidate solution 𝑝𝑛𝑒𝑤
4. If 𝑝𝑛𝑒𝑤 is better than 𝑝𝑏𝑒𝑠𝑡, than 𝑝𝑏𝑒𝑠𝑡= 𝑝𝑛𝑒𝑤
5. Go back to 2, until termination criteria is met

Random Sampling

4

▪ Location planning involves specifying the physical position of facilities that
provide demanded services.

P-Median Example

5

Number of candidate locations
n=100

Number of locations to open
fac=15

1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 … 0

Solution Ecoding

no. of locations

Random Sampling: Randomly generate a
binary vector at each iteration

P-Median – Generate Instance

6

Random Generation of Locations

Array i,j of distances between locations

Demand for each location is generated randomly

Inputs

7

P-Median – Initial Solution

Binary vector of size n;
1 if location is open; 0
otherwise

We allocate locations
to the closest facility
- Uncapacitated P-
Median Problem

Plot

P-Median – Random Sampling
Search Procedure

8

Random Sampling

Randomly select some
locations to open

P-Median – Random Sampling
Search Procedure

9

Random Sampling

If objective value is worse than the
best objective value found in previous
iterations, then nothing happens;
otherwise we update the best solution

Plot

Keep trace of the objective
values obtained over time

10

Obj. Value = 21,321,318.07 (Gap = 11.1%)

Optimum= 18,954,163.57 (0.7 seconds)

P-Median – Random Sampling
Solution (n=100 ; fac=15)

Random Sampling

CPU time

O
b

j.
V

al
u

e

What is the probability of finding the optimal solution through random sampling?

1

2100
= 1 in 1.27 × 1021

11

P-Median – Random Sampling
Solution (n=1000 ; fac=30)

Obj. Value = 194,419,346.65 (Gap = 16.9%)

Optimum= 161,393,599.84 (321 seconds)

Random Sampling

CPU time

O
b

j.
V

al
u

e

12

P-Median – Random Sampling
Solution (n=5000 ; fac=100)

Obj. Value = 561,681,400.18

Optimum=?

CPU time

O
b

j.
V

al
u

e

▪ Random Sampling keeps randomly
generating new candidate solutions

▪ If we imagine a large space, with,
say, millions of points, it is clear that
it will take very long until we find the
optimal solution for the problem

▪ It may even take extremely long to
find anything remotely good

▪ Random Sampling is like exhaustive
search – not really used in
optimization

Needle in the Haystack

13

Using random sampling is like finding a

needle in the haystack

Source:
https://thriveglobal.com/stories/is-
purpose-the-needle-in-the-haystack/

https://thriveglobal.com/stories/is-purpose-the-needle-in-the-haystack/

Introduction to Local Search

14

Nuno Antunes Ribeiro

Assistant Professor

▪ Local Search is the oldest and
simplest metaheuristics method. Also
often designated as hill climbing ;
steepest descent; iterative
improvement, etc.

▪ At each iteration, the heuristic replaces
the current solution by a neighbour
that improves the objective function

▪ A neighbour solution can be reached
by applying a move operator

▪ The search stops when not better
solutions can be found

Local Search

15

Source:
https://buildingai.elementsofai.com/
Getting-started-with-AI/hill-climbing

https://buildingai.elementsofai.com/Getting-started-with-AI/hill-climbing

Local Search Algorithm

16

Solution representation: Binary encoding
Move Operator: Flipping one bit of the solution
Neighbourhood: [0,0,1] ; [1,1,1] ;…; [0,0,1]
Size of the Neighbourhood = n

Replacement phaseGeneration phase

Best Descent

First Descent

Random Descent

1 1 … 1

New Solution

Replacement Phase

17

▪ First Descent: This strategy consists in choosing the first improving
neighbour that is better than the current solution. Then, an improving
neighbour is immediately selected to replace the current solution.

▪ Best Descent: In this strategy, the best neighbour (i.e., neighbour that
improves the most the cost function) is selected. The neighbourhood is
evaluated in a fully deterministic manner. Hence, the exploration of the
neighbourhood is exhaustive

▪ Random selection: In this strategy, a random selection is applied to
those neighbours improving the current solution

Solution Representation

18

▪ Designing any iterative
metaheuristic needs an encoding
of a solution

▪ The encoding plays a major role
in the efficiency and effectiveness
of a metaheuristic procedure and
constitutes an essential step in
designing any metaheuristic.

▪ Many straightforward encodings
may be applied for some
traditional families of optimization
problems. Those representations
may be combined or underlying
new representations.

▪ The definition of the
neighbourhood is a
required common step for
the design of any Local
Search metaheuristic. It
plays a crucial role in the
performance

▪ A neighbour solution is
obtained by the
application of a search
operator that performs a
small perturbation to the
solutions

Neighbourhood and Move Operator

19

▪ Binary encoding: the neighbourhood of a binary
solution consists in flipping one bit of the solution.
For a binary vector of size n, the size of the
neighbourhood will be n.

20

Size of the neighbourhood

▪ Permutation encoding: A usual neighbourhood
is based on the “swap” operator that consists in
exchanging (or swapping) the location of two
elements. For a permutation of size n, the size of
this neighbourhood is n(n − 1)/2

1 0 … 1
Current
solution

0 0 … 1

1 1 … 1

1 0 … 0N
ei

gh
b

o
u

rh
o

o
d

so

lu
ti

o
n

s

D B … D
Current
solution

…

…

A B … D

D A … D

D B … AN
ei

gh
b

o
u

rh
o

o
d

so

lu
ti

o
n

s B B … D

D C … D

D B … B

C B … D

D D … D

D B … C

▪ Discrete encoding: The neighbourhood for
binary encodings may be extended to any
discrete vector representation using a given
alphabet (1,2,…k ; a,b,…k). For a discrete vector
of size n, and alphabet with k characters, the size
of the neighbourhood will be (k-1)n.

A B … F
Current
solution

n

n

k

…

B A … D

B A … F

F B … A

N
ei

gh
b

o
u

rh
o

o
d

so

lu
ti

o
n

s

C B … D

A C … F

A F … B

F B … A

A F … B

A B … E

n

n-1

21

▪ Local Search iteratively applies a generation and a replacement procedure;

▪ In the generation phase, a set of candidate solutions is generated from the
current solution by applying a move operator;

▪ In the replacement phase, the best solution from the set of candidate
solutions is selected and compared with the current solution. If the solution
obtained is better than the current solution, then the current solution is
replaced.

1. Initialize: Generate random initial solution,𝑝𝑏𝑒𝑠𝑡 = 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2. While (termination criteria is not met , e.g. CPU time)

3. Generate a new solution (or a set of new solutions) 𝒑𝒏𝒆𝒘 by
applying a small perturbation (move operator) to 𝒑𝒃𝒆𝒔𝒕

4. If 𝑝𝑛𝑒𝑤 is better than 𝑝𝑏𝑒𝑠𝑡, than 𝑝𝑏𝑒𝑠𝑡= 𝑝𝑛𝑒𝑤
5. Go back to 2, until termination criteria is met

Summary – Local Search

Summary – Local Search

22

1 0 … n

Solution Representation:
Binary Encoding

Solution Space
0 0 … 1

1 1 … 1

1 0 … 0

…

Solution Neighbourhood

Current Solution

Move Operator: Flipping
one bit of the solution

Size of the Neighbourhood: 𝑛

Size of the Solution Space: 2𝑛

First Descent

Generation phase

Replacement phase

Summary – Local Search

23

1 0 … n

Solution Representation:
Binary Encoding

Solution Space
0 0 … 1

1 1 … 1

1 0 … 0

…

Solution Neighbourhood

Current Solution

Move Operator: Flipping
one bit of the solution

Size of the Neighbourhood: 𝑛

Size of the Solution Space: 2𝑛

First Descent

Generation phase

Replacement phase

New Solution

…

Summary – Local Search

24

1 1 … 1

Solution Representation:
Binary Encoding

Solution Space
0 1 … 1

1 0 … 1

1 0 … 0

Solution Neighbourhood

Current Solution

Move Operator: Flipping
one bit of the solution

Size of the Neighbourhood: 𝑛

Size of the Solution Space: 2𝑛

First Descent

Generation phase

Replacement phase

Local Search in Python

25

Nuno Antunes Ribeiro

Assistant Professor

▪ Solution Representation: Binary Encoding
(*we could have used discrete encoding)

▪ Move Operator: Open 1 random location and
close 1 random location

▪ Replacement Procedure: First Descent

P-Median Example

26

Number of candidate locations
n=100

Number of locations to open
fac=15

1 0 … n

4 5 … 14

Binary Encoding

Alternative: Discrete Encoding

no. of locations

no. facilities

P-Median – Hill Climbing
Generation Phase

27

Generation Phase

(Move Operator Code)

Hill Climbing

Select a random
location to open

Identify the nearest open location to close

Update binary vector
of locations

P-Median – Hill Climbing
Replacement Phase

28

Replacement Phase

(First Descent)

Hill ClimbingIf objective value is worse than the
best objective value found in previous
iterations, then nothing happens;
otherwise we update the best solution

Plot

Keep trace of the objective
values obtained over time

29

P-Median – Hill Climbing
Solution (n=100 ; fac=15)

Hill Sampling

Obj. Value Hill Climbing = 18,983,919.72 (Gap = 0.16%)
Optimum= 18,954,163.57 (0.7 seconds)

Obj. Value Rand. Sampling = 21,321,318.07 (Gap = 11.1%)

CPU time

O
b

j.
V

al
u

e

30

P-Median – Hill Climbing
Solution (n=1000 ; fac=30)

Hill Climbing

Obj. Value Hill Climbing = 162,325,709.91 (Gap = 0.57%)
Optimum= 161,393,599.84 (321 seconds)

Obj. Value Rand. Sampling = 194,419,346.65 (Gap = 16.9%)
CPU time

O
b

j.
V

al
u

e

31

P-Median – Hill Climbing
Solution (n=5000 ; fac=100)

Obj. Value Hill Climbing = 443,792,460.62

Hill Climbing

Optimum=?

Obj. Value Rand. Sampling = 561,681,400.18 (21%)
CPU time

O
b

j.
V

al
u

e

▪ Solution Representation: Premutation Encoding

▪ Move Operator: Swap 2 locations

▪ Replacement Procedure: First Descent

TSP Example

32

Number of candidate locations
n=100

1 2 3 4 5 6 7 8 9 … n

no. locations

TSP – Generate Instance

33

Random Generation of Locations

Array i,j of distances between locations

Inputs

34

TSP – Initial Solution

Discrete vector of size n is generated by
creating a random sample of size n

Some pre-processing

Plot

TSP – Random Sampling
Search Procedure

35

Random Sampling

Generate new random
permutation of locations

Compute Objective Value

TSP – Random Sampling
Search Procedure

36

Random Sampling

If objective value is worse than the
best objective value found in previous
iterations, then nothing happens;
otherwise we update the best solution

Plot

Keep trace of the objective
values obtained over time

TSP – Hill Climbing
Generation Phase

37

Generation Phase

(Move Operator Code)

Hill Climbing

Apply swap operator

Compute Objective Value

Select two random locations
Swap location in the permutation

TSP – Hill Climbing
Replacement Phase

38

Replacement Phase

(First Descent)

Hill Climbing

If objective value is worse than the
best objective value found in previous
iterations, then nothing happens;
otherwise we update the best solution

Plot

Keep trace of the objective
values obtained over time

TSP Solution (n=100)

39

Hill Climbing = 120,133 (34.7%)
Optimum= 78,357

Rand. Sampling = 422,933 (81.5%)

TSP Solution (n=500)

40

Hill Climbing =297,504 (45.0%)
Best Solution= 220,704 (25.9%)

Rand. Sampling = 2,383,336 (93.1%)

Lower Bound= 163,571

41

Design versus Control Problems

Design versus Control Problems

42

▪ Design problems: Design problems are generally solved once. They need a
very good quality of solutions whereas the time available to solve the problem
is important. These problems involve an important financial investment; (e.g.
telecommunication network design and processor design, etc.)

▪ Control problems: Control problems represent the other extreme where the
problem must be solved frequently in real time. These problems require very
fast heuristics are needed; the quality of the solutions is less critical (e.g.
routing messages in a computer network; traffic management in a city; ride-
sharing operations .

▪ Planning problems: Between these extremes, one can find an intermediate
class of problems represented by planning problems. In this class of
problems, a trade-off between the quality of solution and the search time
must be optimized; (e.g. scheduling of operations ; task assignment, etc.)

▪ Consider the following problem: Given a
set of 𝑛 packages with profit 𝑝𝑗 and weight
𝑤𝑗 , and a set of 𝑚 containers with weight
capacity 𝑐𝑖, select 𝑚 disjoint subsets of
packages so that the total profit of the
selected packages is maximum, while
ensuring the containers’ capacity is never
exceeded

▪ Exercise 1: Formulate the problem
mathematically

▪ Exercise 2: Solve the problem using pyomo
(instances in the next slide)

▪ Exercise 3: Propose and apply a
random sampling and a local search
algorithm for the problem

Activity 1

43

Max 50 ton

▪ Instance 1

random.seed(1)

n = 100 #number of objects

b= 5 #number of bins

cap=50

#Generate random locations

value = random.choices(range(10, 100), k=n)

weights = random.choices(range(5, 20), k=n)

Activity 1 - Instances

44

▪ Instance 2

random.seed(1)

n = 10000 #number of packages

b= 200 #number of bins

cap=50

#Generate random locations

profit = random.choices(range(10, 100), k=n)

weights = random.choices(range(5, 20), k=n)

Solution*=117925.0
CPU time = 986 sec

Solution*=2356
CPU time = 0.53 sec

