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▪ Exhaustive search methods are ineffective when solving very large 
optimization problems

▪ Exact methods of Optimization solve complex problems without the 
need to exhaustively search for all possible solutions of a problem. These 
methos ensure that the solution obtained is the optimal one. 

▪ Several exact methods of optimization in the previous lecture (Simplex ; 
Branch and Bound;  Dynamic Programming ; etc)

▪ However, as the size of your problem grows, the computation 
requirements to solve optimization increases considerably.

▪ In many instance, the solution space for solutions is so large that exact 
methods of optimization cannot even find feasible solutions for a problem.

▪ In those situations using exact methods of optimization is impractical
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Optimization Methods
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Exact Methods - CPU Performance

P-Median Travelling Salesman Vehicle Routing

n Fac. CPU Time Opt. Value n CPU Time Opt. Value n Veh. Cap. CPU Time Opt. Value

10 1 0.12 s 8061276 10 1.29 s 34993 10 2 180 1.22 32846

20 3 0.16 9814108 20 20 3 230 697 58996

25 4 0.14 s 9359061 25 1.21 s 39224 25 4 250 >6000
64362 

(11.2%)

50 8 0.17 s 9870230 50 49 s 57546 - - - - -

75 12 0.25 s 15617651 75 91 s 70395 - - - - -

100 15 0.32 s 18954163 100 178 s 78357 - - - - -

200 20 1.25 s 35825600 200 2625 s 105404 - - - - -

500 30 11.18 s 74794047 500 >6000 s
220704 
(25.9%)

- - - - -

1000 30 147.61 s 161388969 - - - - - - - -

5000 100 >6000
No Solution

Found
- - - - - - - -



▪ The most “naïve” metaheuristic approach consists on randomly sampling 
solutions from the solution space.

1. Initialize: Generate random initial solution, 𝑝𝑏𝑒𝑠𝑡 = 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2. While (termination criteria is not met, e.g. CPU time)

3. Create random candidate solution 𝑝𝑛𝑒𝑤
4. If 𝑝𝑛𝑒𝑤 is better than 𝑝𝑏𝑒𝑠𝑡, than 𝑝𝑏𝑒𝑠𝑡= 𝑝𝑛𝑒𝑤
5. Go back to 2, until termination criteria is met

Random Sampling
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▪ Location planning involves specifying the physical position of facilities that 
provide demanded services.

P-Median Example
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Number of candidate locations
n=100

Number of locations to open
fac=15

1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 … 0

Solution Ecoding

no. of locations

Random Sampling: Randomly generate a 
binary vector at each iteration 



P-Median – Generate Instance
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Random Generation of Locations

Array i,j of distances between locations

Demand for each location is generated randomly

Inputs
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P-Median – Initial Solution 

Binary vector of size n; 
1 if location is open; 0 
otherwise

We allocate locations 
to the closest facility 
- Uncapacitated P-
Median Problem

Plot



P-Median – Random Sampling
Search Procedure
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Random Sampling

Randomly select some 
locations to open



P-Median – Random Sampling
Search Procedure
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Random Sampling

If objective value is worse than the 
best objective value found in previous 
iterations, then nothing happens; 
otherwise we update the best solution

Plot

Keep trace of the objective 
values obtained over time
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Obj. Value = 21,321,318.07 (Gap = 11.1%)

Optimum= 18,954,163.57 (0.7 seconds)

P-Median – Random Sampling
Solution (n=100 ; fac=15)

Random Sampling

CPU time
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What is the probability of finding the optimal solution through random sampling?

1

2100
= 1 in 1.27 × 1021



11

P-Median – Random Sampling
Solution (n=1000 ; fac=30)

Obj. Value = 194,419,346.65 (Gap = 16.9%)

Optimum= 161,393,599.84 (321 seconds)

Random Sampling
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P-Median – Random Sampling
Solution (n=5000 ; fac=100)

Obj. Value = 561,681,400.18

Optimum=?

CPU time
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▪ Random Sampling keeps randomly 
generating new candidate solutions

▪ If we imagine a large space, with, 
say, millions of points, it is clear that 
it will take very long until we find the 
optimal solution for the problem

▪ It may even take extremely long to 
find anything remotely good

▪ Random Sampling is like exhaustive 
search – not really used in 
optimization

Needle in the Haystack
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Using random sampling is like finding a 

needle in the haystack

Source: 
https://thriveglobal.com/stories/is-
purpose-the-needle-in-the-haystack/

https://thriveglobal.com/stories/is-purpose-the-needle-in-the-haystack/


Introduction to Local Search
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▪ Local Search is the oldest and 
simplest metaheuristics method. Also 
often designated as hill climbing ; 
steepest descent; iterative 
improvement, etc.

▪ At each iteration, the heuristic replaces 
the current solution by a neighbour 
that improves the objective function

▪ A neighbour solution can be reached 
by applying a move operator

▪ The search stops when not better 
solutions can be found

Local Search
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Source: 
https://buildingai.elementsofai.com/
Getting-started-with-AI/hill-climbing

https://buildingai.elementsofai.com/Getting-started-with-AI/hill-climbing


Local Search Algorithm
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Solution representation: Binary encoding
Move Operator: Flipping one bit of the solution
Neighbourhood: [0,0,1] ; [1,1,1] ;…; [0,0,1]
Size of the Neighbourhood = n

Replacement phaseGeneration phase

Best Descent

First Descent

Random Descent

1 1 … 1

New Solution



Replacement Phase

17

▪ First Descent: This strategy consists in choosing the first improving 
neighbour that is better than the current solution. Then, an improving 
neighbour is immediately selected to replace the current solution.

▪ Best Descent: In this strategy, the best neighbour (i.e., neighbour that 
improves the most the cost function) is selected. The neighbourhood is 
evaluated in a fully deterministic manner. Hence, the exploration of the 
neighbourhood is exhaustive

▪ Random selection: In this strategy, a random selection is applied to 
those neighbours improving the current solution



Solution Representation
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▪ Designing any iterative 
metaheuristic needs an encoding
of a solution

▪ The encoding plays a major role 
in the efficiency and effectiveness 
of a metaheuristic procedure and 
constitutes an essential step in 
designing any metaheuristic. 

▪ Many straightforward encodings 
may be applied for some 
traditional families of optimization 
problems. Those representations 
may be combined or underlying 
new representations. 



▪ The definition of the 
neighbourhood is a 
required common step for 
the design of any Local 
Search metaheuristic. It 
plays a crucial role in the 
performance

▪ A neighbour solution is 
obtained by the 
application of a search 
operator that performs a 
small perturbation to the 
solutions

Neighbourhood and Move Operator
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▪ Binary encoding: the neighbourhood of a binary 
solution consists in flipping one bit of the solution. 
For a binary vector of size n, the size of the 
neighbourhood will be n.
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Size of the neighbourhood

▪ Permutation encoding:  A usual neighbourhood 
is based on the “swap” operator that consists in 
exchanging (or swapping) the location of two 
elements. For a permutation of size n, the size of 
this neighbourhood is n(n − 1)/2
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▪ Discrete encoding: The neighbourhood for 
binary encodings may be extended to any 
discrete vector representation using a given 
alphabet (1,2,…k ; a,b,…k). For a discrete vector 
of size n, and alphabet with k characters, the size 
of the neighbourhood will be (k-1)n.
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▪ Local Search iteratively applies a generation and a replacement procedure;

▪ In the generation phase, a set of candidate solutions is generated from the 
current solution by applying a move operator;

▪ In the replacement phase, the best solution from the set of candidate 
solutions is selected and compared with the current solution. If the solution 
obtained is better than the current solution, then the current solution is 
replaced.

1. Initialize: Generate random initial solution,𝑝𝑏𝑒𝑠𝑡 = 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2. While (termination criteria is not met , e.g. CPU time)

3. Generate a new solution (or a set of new solutions) 𝒑𝒏𝒆𝒘 by 
applying a small perturbation (move operator) to 𝒑𝒃𝒆𝒔𝒕

4. If 𝑝𝑛𝑒𝑤 is better than 𝑝𝑏𝑒𝑠𝑡, than 𝑝𝑏𝑒𝑠𝑡= 𝑝𝑛𝑒𝑤
5. Go back to 2, until termination criteria is met

Summary – Local Search



Summary – Local Search
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1 0 … n

Solution Representation: 
Binary Encoding 

Solution Space
0 0 … 1

1 1 … 1

1 0 … 0

…

Solution  Neighbourhood

Current Solution

Move Operator: Flipping 
one bit of the solution

Size of the Neighbourhood: 𝑛

Size of the Solution Space: 2𝑛

First Descent

Generation phase

Replacement phase



Summary – Local Search
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1 0 … n

Solution Representation: 
Binary Encoding 

Solution Space
0 0 … 1

1 1 … 1

1 0 … 0

…

Solution  Neighbourhood

Current Solution

Move Operator: Flipping 
one bit of the solution

Size of the Neighbourhood: 𝑛

Size of the Solution Space: 2𝑛

First Descent

Generation phase

Replacement phase

New Solution



…

Summary – Local Search
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1 1 … 1

Solution Representation: 
Binary Encoding 

Solution Space
0 1 … 1

1 0 … 1

1 0 … 0

Solution  Neighbourhood

Current Solution

Move Operator: Flipping 
one bit of the solution

Size of the Neighbourhood: 𝑛

Size of the Solution Space: 2𝑛

First Descent

Generation phase

Replacement phase



Local Search in Python
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▪ Solution Representation: Binary Encoding 
(*we could have used discrete encoding)

▪ Move Operator: Open 1 random location and 
close 1 random location

▪ Replacement Procedure: First Descent

P-Median Example
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Number of candidate locations
n=100

Number of locations to open
fac=15

1 0 … n

4 5 … 14

Binary Encoding 

Alternative: Discrete Encoding

no. of locations

no. facilities 



P-Median – Hill Climbing 
Generation Phase

27

Generation Phase

(Move Operator Code)

Hill Climbing

Select a random 
location to open

Identify the nearest open location to close

Update binary vector 
of locations



P-Median – Hill Climbing 
Replacement Phase
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Replacement Phase

(First Descent)

Hill ClimbingIf objective value is worse than the 
best objective value found in previous 
iterations, then nothing happens; 
otherwise we update the best solution

Plot

Keep trace of the objective 
values obtained over time
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P-Median – Hill Climbing
Solution (n=100 ; fac=15)

Hill Sampling

Obj. Value Hill Climbing = 18,983,919.72 (Gap = 0.16%)
Optimum= 18,954,163.57 (0.7 seconds)

Obj. Value Rand. Sampling = 21,321,318.07 (Gap = 11.1%)

CPU time
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P-Median – Hill Climbing
Solution (n=1000 ; fac=30)

Hill Climbing

Obj. Value Hill Climbing = 162,325,709.91 (Gap = 0.57%)
Optimum= 161,393,599.84 (321 seconds)

Obj. Value Rand. Sampling = 194,419,346.65 (Gap = 16.9%)
CPU time
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P-Median – Hill Climbing
Solution (n=5000 ; fac=100)

Obj. Value Hill Climbing = 443,792,460.62

Hill Climbing

Optimum=?

Obj. Value Rand. Sampling = 561,681,400.18 (21%)
CPU time
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▪ Solution Representation: Premutation Encoding

▪ Move Operator: Swap 2 locations

▪ Replacement Procedure: First Descent

TSP Example
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Number of candidate locations
n=100

1 2 3 4 5 6 7 8 9 … n

no. locations 



TSP – Generate Instance
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Random Generation of Locations

Array i,j of distances between locations

Inputs
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TSP – Initial Solution 

Discrete vector of size n is generated by 
creating a random sample of size n

Some pre-processing

Plot



TSP – Random Sampling
Search Procedure
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Random Sampling

Generate new random 
permutation of locations

Compute Objective Value



TSP – Random Sampling
Search Procedure

36

Random Sampling

If objective value is worse than the 
best objective value found in previous 
iterations, then nothing happens; 
otherwise we update the best solution

Plot 

Keep trace of the objective 
values obtained over time



TSP – Hill Climbing 
Generation Phase
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Generation Phase

(Move Operator Code)

Hill Climbing

Apply swap operator

Compute Objective Value

Select two random locations
Swap location in the permutation



TSP – Hill Climbing 
Replacement Phase
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Replacement Phase

(First Descent)

Hill Climbing

If objective value is worse than the 
best objective value found in previous 
iterations, then nothing happens; 
otherwise we update the best solution

Plot

Keep trace of the objective 
values obtained over time



TSP Solution (n=100)
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Hill Climbing = 120,133 (34.7%)
Optimum= 78,357 

Rand. Sampling = 422,933 (81.5%)



TSP Solution (n=500)
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Hill Climbing =297,504 (45.0%)
Best Solution= 220,704 (25.9%)

Rand. Sampling = 2,383,336  (93.1%)

Lower Bound= 163,571
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Design versus Control Problems 



Design versus Control Problems 
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▪ Design problems: Design problems are generally solved once. They need a 
very good quality of solutions whereas the time available to solve the problem 
is important. These problems involve an important financial investment; (e.g. 
telecommunication network design and processor design, etc.) 

▪ Control problems: Control problems represent the other extreme where the 
problem must be solved frequently in real time. These problems require very 
fast heuristics are needed; the quality of the solutions is less critical (e.g. 
routing messages in a computer network; traffic management in a city; ride-
sharing operations .

▪ Planning problems: Between these extremes, one can find an intermediate 
class of problems represented by planning problems. In this class of 
problems, a trade-off between the quality of solution and the search time 
must be optimized; (e.g. scheduling of operations ; task assignment, etc.)



▪ Consider the following problem: Given a 
set of 𝑛 packages with profit 𝑝𝑗 and weight 
𝑤𝑗 , and a set of 𝑚 containers with weight 
capacity 𝑐𝑖, select 𝑚 disjoint subsets of 
packages so that the total profit of the 
selected packages is maximum, while 
ensuring the containers’ capacity is never 
exceeded

▪ Exercise 1: Formulate the problem 
mathematically

▪ Exercise 2: Solve the problem using pyomo
(instances in the next slide)

▪ Exercise 3: Propose and apply a 
random sampling and a local search 
algorithm for the problem

Activity 1
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Max 50 ton



▪ Instance 1

random.seed(1)

n = 100 #number of objects

b= 5 #number of bins

cap=50

#Generate random locations

value = random.choices(range(10, 100), k=n)

weights = random.choices(range(5, 20), k=n)

Activity 1 - Instances
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▪ Instance 2

random.seed(1)

n = 10000 #number of packages

b= 200 #number of bins

cap=50

#Generate random locations

profit = random.choices(range(10, 100), k=n)

weights = random.choices(range(5, 20), k=n)

Solution*=117925.0
CPU time = 986 sec

Solution*=2356
CPU time = 0.53 sec


