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Solution Encoding
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▪ Designing any iterative 
metaheuristic needs an encoding
of a solution

▪ The encoding plays a major role 
in the efficiency and effectiveness 
of a metaheuristic procedure and 
constitutes an essential step in 
designing any metaheuristic. 

▪ Many straightforward encodings 
may be applied for some 
traditional families of optimization 
problems. Those representations 
may be combined or underlying 
new representations. 
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Search Operator

▪ The efficiency of a solution encoding 
is also related to the search 
operator. 

▪ When defining a solution encoding, 
one has to bear in mind how the 
solution will be perturbed.

▪ Default search operators are often 
considered – however more 
sophisticated search operators may 
be considered, especially when 
solving problems with large solution 
spaces and a significant number of 
constraints.

Binary encoding – flip n bits 
of the solution (typically 1 or 
2 bits)

Discrete encoding – update 
n bits of the solution by 
randomly generating a new 
value (typically 1 or 2 bits)

Permutation encoding – swap 
the location of n elements 
(typically 2 elements)

Real encoding – update n bits 
of the solution by randomly 
generating a new value within 
a certain range (typically 2 
elements)

1 0 … 1
Current 
solution

1 1 … 1
New

solution

A F … A
Current 
solution

A G … A
New

solution

1.2 2.4 … 0.8
Current 
solution

New
solution

1.2 1.9 … 0.8

(A,B,C,D,E,F,G,H,I,J)Set of feasible 
alternatives

rnd(-1,1)=-0.5
Random 
number

A B … J
Current 
solution

B A … A
New

solution



▪ Many sequencing, scheduling, planning and routing problems are 
considered as permutation problems

▪ There are two main types of permutation problems:

• Priority Problems (e.g. scheduling) - In these problems permutations 
represent a priority queue and the position in the solution is important

• Adjacency Problems (e.g. TSP) - In these problems permutations 
represent an adjacency list - e.g. city “A” may be the first in the list, the 
second, or the nth element in the list; the solution is the same provided 
that all elements of the list are adjacent to the same pair of elements

▪ The efficiency of a neighbourhood is related not only to the 
representation but also the type of problems to solve and 
corresponding search operators

Search Operators in Permutation Problems
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▪ Swap Operator

▪ Insertion Operator

▪ Inversion Operator
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Search Operators in Permutation Problems

Used in both: 

Priority and 

Adjacency 

Problems



▪ 2-Opt
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Search Operators in Adjacency Problems

Only used in 

Adjacency 

Problems



▪ 3-Opt
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Only used in 

Adjacency 

Problems

Search Operators in Adjacency Problems



▪ 3-Opt (2Opt Solutions)

8

Search Operators in Adjacency Problems

3-Opt Neighbourhood – 7 Solutions

Only used in 

Adjacency 

Problems



▪ 3-Opt (Generalization)

• Split the tour into 3 random parts (A – B – C)

• 3-Opt Solutions:

• A – inv(B) – inv(C)

• A – C – B 

• A – C – inv(B)

• A – inv(C) – B

• 2-Opt Solutions:

• A – inv(B) – C

• A – B – inv(C)

• A – inv(C) – inv(B) 

*inv stands for inversion
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Search Operators in Adjacency Problems

1 2 3 4 5 6 7 8 9 10

A B C

1 2 3 4 5 7 6 10 9 8

1 2 3 4 5 8 9 10 6 7

1 2 3 4 5 7 6 8 9 10

1 2 3 4 5 6 7 10 9 8

1 2 3 4 5 8 9 10 7 6

1 2 3 4 5 10 9 8 6 7

1 2 3 4 5 10 9 8 7 6



Swap Operator vs 3-Opt Operator
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Swap Operator

3-Opt Operator



Example

11

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

1 2 10 9 8 7 6 5 4 3 11 12 13 14 15 16



Optimal Solution
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3-Opt Operator
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1 2 10 9 8 7 6 5 4 3 11 12 13 14 15 16

A B C 3-Opt Solutions:
A – inv(B) – inv(C)
A – C – B 
A – C – inv(B)
A – inv(C) – B

2-Opt Solutions:
A – inv(B) – C
A – B – inv(C)
A – inv(C) – inv(B) 



3-Opt Operator
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3-Opt Solutions:
A – inv(B) – inv(C)
A – C – B 
A – C – inv(B)
A – inv(C) – B

2-Opt Solutions:
A – inv(B) – C
A – B – inv(C)
A – inv(C) – inv(B) 



Swap Operator
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Swap Operator
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Swap Operator
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Insertion Operator
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Insertion Operator
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Inversion Operator

20

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

1 2 10 9 8 7 6 5 4 3 11 12 13 14 15 16

1 2 10 9 8 7 6 5 4 3 11 16 15 14 13 12



21

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

1 2 10 9 8 7 12 13 14 15 16 6 5 4 3 11

1 2 10 9 8 7 6 5 4 3 11 16 15 14 13 12

Inversion vs 3-Opt Operator



Inversion vs 3-Opt Operator
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A B C

A C rev(B)

3-Opt Solutions:
A – inv(B) – inv(C)
A – C – B 
A – C – inv(B)
A – inv(C) – B

2-Opt Solutions:
A – inv(B) – C
A – B – inv(C)
A – inv(C) – inv(B) 



K-Opt Operator in Python
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▪ Solution Representation: Premutation Encoding

▪ Search Operators: Swap 2 locations ; Insertion ; 3-Opt

▪ Replacement Procedure: First Descent ; First Descent ; Best Descent 

TSP Example

24

Number of candidate locations
n=100
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TSP – Hill Climbing 
Generation Phase

Select two random locations
Swap location in the permutation

Select location to insert (i1)
Remove from permutation list 
Insert in a new position in the permutation list

Follow the procedure 
explained in slide 43 

Explore the whole 
neighbourhood (Best 
Descent) and select 
the best solution



TSP – Hill Climbing 
Generation Phase
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Generation Phase

(Search Operator Code)

Apply search operator

Compute Objective Value



TSP – Hill Climbing 
Replacement Phase
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Replacement Phase

(First Descent)

Hill Climbing

If objective value is worse than the 
best objective value found in previous 
iterations, then nothing happens; 
otherwise we update the best solution

Plot

Keep trace of the objective 
values obtained over time



TSP Solution (n=100)
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TSP Solution (n=500)
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Zoom



Constraint Handling
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▪ Dealing with constraints in optimization problems is an important topic for 
the efficient design of metaheuristics. 

▪ Indeed, many continuous and discrete optimization problems are 
constrained, and it is not trivial to deal with those constraints. 

Constraint Handling

31

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj 6

Obj7

Objects Knapsack Solution Encoding

Example Knapsack Problem:

Search Operator

Flip n bits of the solution

0 0 0 0 0 0 0



▪ Dealing with constraints in optimization problems is an important topic for 
the efficient design of metaheuristics. 

▪ Indeed, many continuous and discrete optimization problems are 
constrained, and it is not trivial to deal with those constraints. 

Constraint Handling
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Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj 6

Obj7

Objects Knapsack Solution Encoding

1 0 0 0 0 0 0

Search Operator

Flip n bits of the solution

Obj 1

Obj 3

Obj 5

Infeasible Solution

Example Knapsack Problem:

1 1

Knapsack



▪ Reject Strategies: represent a simple approach, where only feasible 
solutions are kept during the search and then infeasible solutions are 
automatically discarded. This kind of strategies are conceivable if the portion of 
infeasible solutions of the search space is very small.

▪ Repairing strategies: A repairing procedure is applied to infeasible solutions 
to generate feasible ones (e.g. extracting from the knapsack some elements to 
satisfy the capacity constraint in the knapsack problem)

▪ Penalizing Strategies: reject strategies do not exploit infeasible solutions. 
Indeed, it would be interesting to use some information on infeasible solutions to 
guide the search. In penalizing strategies, infeasible solutions are considered 
during the search process. The unconstrained objective function is extended by 
a penalty function that will penalize infeasible solutions

▪ Preserving Strategies: In preserving strategies for constraint handling, a 
specific representation and operators will ensure the generation of 
feasible solutions. They incorporate problem-specific knowledge into the 
representation and search operators to generate only feasible solutions

Constraint Handling Techniques

33



▪ Dealing with constraints in optimization problems is an important topic for 
the efficient design of metaheuristics. 

▪ Indeed, many continuous and discrete optimization problems are 
constrained, and it is not trivial to deal with those constraints. 

Reject Strategies

34

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj7

Objects Solution Encoding

1 0 0 0 0 0 0

Search Operator

Flip n bits of the solution

Obj 1

Obj 3

Obj 5

Example Knapsack Problem:

1 1

Rejection Strategy

Obj 6

Knapsack



▪ Reject Strategies: represent a simple approach, where only feasible 
solutions are kept during the search and then infeasible solutions are 
automatically discarded. This kind of strategies are conceivable if the portion of 
infeasible solutions of the search space is very small.

▪ Repairing strategies: A repairing procedure is applied to infeasible solutions 
to generate feasible ones (e.g. extracting from the knapsack some elements to 
satisfy the capacity constraint in the knapsack problem)

▪ Penalizing Strategies: reject strategies do not exploit infeasible solutions. 
Indeed, it would be interesting to use some information on infeasible solutions to 
guide the search. In penalizing strategies, infeasible solutions are considered 
during the search process. The unconstrained objective function is extended by 
a penalty function that will penalize infeasible solutions

▪ Preserving Strategies: In preserving strategies for constraint handling, a 
specific representation and operators will ensure the generation of 
feasible solutions. They incorporate problem-specific knowledge into the 
representation and search operators to generate only feasible solutions

Constraint Handling Techniques
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▪ Dealing with constraints in optimization problems is an important topic for 
the efficient design of metaheuristics. 

▪ Indeed, many continuous and discrete optimization problems are 
constrained, and it is not trivial to deal with those constraints. 

Repairing strategies

36
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Obj7
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1 0 0 0 0 0 0

Search Operator

Flip n bits of the solution

Obj 1

Obj 3

Obj 5

Example Knapsack Problem:

1 1

Repairing Strategy

Obj 6

Knapsack

(Randomly select object to remove)



▪ Reject Strategies: represent a simple approach, where only feasible 
solutions are kept during the search and then infeasible solutions are 
automatically discarded. This kind of strategies are conceivable if the portion of 
infeasible solutions of the search space is very small.

▪ Repairing strategies: A repairing procedure is applied to infeasible solutions 
to generate feasible ones (e.g. extracting from the knapsack some elements to 
satisfy the capacity constraint in the knapsack problem)

▪ Penalizing Strategies: The reject strategies do not exploit infeasible solutions. 
Indeed, it would be interesting to use some information on infeasible solutions to 
guide the search. In penalizing strategies, infeasible solutions are considered 
during the search process. The unconstrained objective function is extended by 
a penalty function that will penalize infeasible solutions

▪ Preserving Strategies: In preserving strategies for constraint handling, a 
specific representation and operators will ensure the generation of 
feasible solutions. They incorporate problem-specific knowledge into the 
representation and search operators to generate only feasible solutions

Constraint Handling Techniques

37



▪ The objective function f may be penalized in a linear manner, where c(s) 
represents the cost of the constraint violation and λ the weights given to 
infeasibilities.

▪ Different penalty functions may be use:

• Violated constraints: A straightforward function is to count the 
number of violated constraints. No information is used on how close 
the solution is to the feasible region of the search space. (e.g. number 
of bins with capacity violated in the bin-packing problem)

• Amount of infeasibility: Information on how close a solution is to a 
feasible region is taken into account (e.g. how much the capacity of a 
bin is exceeded in the bin-packing problem). 

Penalizing Strategies

38



Penalizing Strategies
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𝑤𝑖 𝑓𝑖

Obj 1 2 5

Obj 2 3.75 7

Obj 3 2.5 3

Obj 4 3 5

Obj 5 1 4

Obj 6 1.5 8

Obj 7 2.75 7

cap 4

𝜆

𝑐 𝑠 = −
𝑚𝑖𝑛 0, σ𝑖𝑤𝑖 − 𝐶𝑎𝑝

𝐶𝑎𝑝

𝑓 𝑠 = 

𝑖

𝑓𝑖

𝜆𝑐 𝑠 = −
2 + 2.5 + 1 − 4

4
= −0.375

𝑓 𝑠 = 5 + 3 + 4 = 12

𝑓′(𝑠) = 𝟏𝟏. 𝟔𝟐𝟓

Infeasible Solution

𝑓′ 𝑠 = 𝑓 𝑠 + 𝜆𝑐(𝑠)

𝜆 = 1

5.5 kg



Penalizing Strategies

40

𝑤𝑖 𝑓𝑖

Obj 1 2 5

Obj 2 3.75 7

Obj 3 2.5 3

Obj 4 3 5

Obj 5 1 4

Obj 6 1.5 8

Obj 7 2.75 7

cap 4

𝑓 𝑠 = 

𝑖

𝑓𝑖

𝜆𝑐 𝑠 = −4.125

𝑓 𝑠 = 39

𝑓′(𝑠) = 𝟑𝟒. 𝟖𝟕𝟓

Infeasible Solution

𝑓′ 𝑠 = 𝑓 𝑠 + 𝜆𝑐(𝑠)

𝜆 = 1

𝜆

16.5 kg

𝑐 𝑠 = −
𝑚𝑖𝑛 0, σ𝑖𝑤𝑖 − 𝐶𝑎𝑝

𝐶𝑎𝑝



Penalizing Strategies
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𝑤𝑖 𝑓𝑖

Obj 1 2 5

Obj 2 3.75 7

Obj 3 2.5 3

Obj 4 3 5

Obj 5 1 4

Obj 6 1.5 8

Obj 7 2.75 7

cap 4

𝜆

𝑐 𝑠 = −
𝑚𝑖𝑛 0, σ𝑖𝑤𝑖 − 𝐶𝑎𝑝

𝐶𝑎𝑝

𝑓 𝑠 = 

𝑖

𝑓𝑖

𝜆𝑐 𝑠 = −3.75

𝑓 𝑠 = 12

𝑓′(𝑠) = 𝟖. 𝟐𝟓

Infeasible Solution

𝑓′ 𝑠 = 𝑓 𝑠 + 𝜆𝑐(𝑠)

𝜆 = 10

5.5 kg



Penalizing Strategies
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𝑤𝑖 𝑓𝑖

Obj 1 2 5

Obj 2 3.75 7

Obj 3 2.5 3

Obj 4 3 5

Obj 5 1 4

Obj 6 1.5 8

Obj 7 2.75 7

cap 4

𝑓 𝑠 = 

𝑖

𝑓𝑖

𝜆𝑐 𝑠 = −41.25

𝑓 𝑠 = 39

𝑓′(𝑠) = −𝟐. 𝟐𝟓

Infeasible Solution

𝑓′ 𝑠 = 𝑓 𝑠 + 𝜆𝑐(𝑠)

𝜆 = 10

𝜆

16.5 kg

𝑐 𝑠 = −
𝑚𝑖𝑛 0, σ𝑖𝑤𝑖 − 𝐶𝑎𝑝

𝐶𝑎𝑝



Penalizing Strategies
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𝑤𝑖 𝑓𝑖

Obj 1 2 5

Obj 2 3.75 7

Obj 3 2.5 3

Obj 4 3 5

Obj 5 1 4

Obj 6 1.5 8

Obj 7 2.75 7

cap 4

𝜆𝑐 𝑠 = −2.813

𝑓 𝑠 = 17

𝑓′ 𝑠 = 𝟏𝟒. 𝟏𝟖𝟕

Infeasible Solution

𝜆 = 10

4.5 kg

𝑓 𝑠 = 

𝑖

𝑓𝑖

𝑓′ 𝑠 = 𝑓 𝑠 + 𝜆𝑐(𝑠)

𝜆

𝑐 𝑠 = −
𝑚𝑖𝑛 0, σ𝑖𝑤𝑖 − 𝐶𝑎𝑝

𝐶𝑎𝑝



Penalizing Strategies
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𝑤𝑖 𝑓𝑖

Obj 1 2 5

Obj 2 3.75 7

Obj 3 2.5 3

Obj 4 3 5

Obj 5 1 4

Obj 6 1.5 8

Obj 7 2.75 7

cap 4

𝜆𝑐 𝑠 = 0

𝑓 𝑠 = 5 + 1 + 8 = 13

𝑓′ 𝑠 = 𝟏𝟑

Feasible solution, but worse objective value

𝜆 = 10

4.5 kg

𝑓 𝑠 = 

𝑖

𝑓𝑖

𝑓′ 𝑠 = 𝑓 𝑠 + 𝜆𝑐(𝑠)

𝜆

𝑐 𝑠 = −
𝑚𝑖𝑛 0, σ𝑖𝑤𝑖 − 𝐶𝑎𝑝

𝐶𝑎𝑝



▪ The previously presented penalty functions do not exploit any information of 
the search process. In adaptive penalty functions, knowledge on the search 
process is included to improve the efficiency and the effectiveness of 
the search.

Adaptative Penalization

45

▪ Example:

• The parameters 𝜆 is self-adjusting. Initially, the 
parameter is initialized to 1.

• The parameters 𝜆 is reduced (resp. increased) 
if the last 𝜇 visited solutions are all feasible 
(resp. all infeasible), where µ is a user-defined 
parameter. The reduction (resp. increase) may 
consist in dividing (resp. multiplying) the actual 
value by 2, for example.

𝜆



▪ Reject Strategies: represent a simple approach, where only feasible 
solutions are kept during the search and then infeasible solutions are 
automatically discarded. This kind of strategies are conceivable if the portion of 
infeasible solutions of the search space is very small.

▪ Repairing strategies: A repairing procedure is applied to infeasible solutions 
to generate feasible ones (e.g. extracting from the knapsack some elements to 
satisfy the capacity constraint in the knapsack problem)

▪ Penalizing Strategies: The reject strategies do not exploit infeasible solutions. 
Indeed, it would be interesting to use some information on infeasible solutions to 
guide the search. In penalizing strategies, infeasible solutions are considered 
during the search process. The unconstrained objective function is extended by 
a penalty function that will penalize infeasible solutions

▪ Preserving Strategies: In preserving strategies for constraint handling, a 
specific representation and operators will ensure the generation of 
feasible solutions. They incorporate problem-specific knowledge into the 
representation and search operators to generate only feasible solutions

Constraint Handling Techniques

46



▪ Constructing a solution encoding/search 
operator that always guarantee that 
feasible solutions are obtained, is often 
not possible.

▪ Therefore, preserving strategies are not 
an alternative in many cases

▪ Yet, before applying other constraint
handling techniques, one must think if it 
is possible to design a solution
encoding/search operator that always 
provide feasible solutions

▪ Let’s take a look on a classic example: 
the N-Queens Puzzle

Preserving Strategies

47



▪ The N-Queens Puzzle problem consists 
on putting N chess queens on an NxN
chessboard such that none of queens is 
able to capture any other.

▪ By exhaustive search, the number of 
possibilities is 648, that is over 4 billion 
solutions (size of the search space)

▪ If we prohibit more than one queen per 
row, then the search space will have 8 8

solutions, that is over 16 millions.

▪ If we forbid two queens to be both in the 
same column or row, the encoding will 
be reduced to 𝑛!, that is 40,320

Preserving Strategies

48



▪ Dealing with constraints in optimization problems is an important topic for 
the efficient design of metaheuristics. 

▪ Indeed, many continuous and discrete optimization problems are 
constrained, and it is not trivial to deal with those constraints. 

Preserving Strategies

49

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj7

Objects Solution Encoding

1 0 0 0 0 0 0

Search Operator

Flip n bits of the solution

Obj 1

Example Knapsack Problem:

1 1

Rejection Strategy

Obj 6

Knapsack

Obj 6



▪ A solution encoding must have the following characteristics:

• Completeness: all solutions associated with the problem must 
be represented.

• Connexity: A search path must exist between any two solutions 
of the search space. Any solution of the search space, especially 
the global optimum solution, can be attained.

• Efficiency: The representation must be easy to manipulate by 
the search operators. The time and space complexities of the 
operators dealing with the representation must be reduced.

Solution Encoding and Search Operator

50

Solution encoding is key in metaheuristics performance – but also very problem specific!



Direct and Indirect Encoding
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▪ Indirect encoding is characterized by a lack of 
details in the solution representation - i.e. some 
information on the solution is not explicitly 
represented.

▪ A decoder is required to express the solution 
given by the encoding. According to the 
information that is present in the indirect 
encoding, the decoder has more or less work to 
derive a complete solution

▪ Indirect encoding aims to reduce the size of the 
original search space. They are particularly 
popular in optimization problems dealing with 
many constraints such as scheduling problems. 

Direct vs Indirect Encoding

52

Solution Space

Decoder



P-median Problem

53

1 0 0 1 0 0 0 0 0

Solution Encoding

… …



▪ In the classical Job-Shop Problem there are n jobs that must be processed on m
machines. Each job consists of a sequence of different tasks. Each task needs 
to be processed during an uninterrupted period of time on a given machine.

▪ Here is an example with m=3 machines and n=3 jobs. We count jobs, machines 
and tasks starting from 0.

Job-Shop Scheduling Problem (JSSP)

54

Job (Machine,Duration) (Machine,Duration) (Machine,Duration)

0 (0,3) (1,2) (2,2)

1 (0,2) (2,1) (1,4)

2 (1,4) (2,3)

Gant Chart representing a feasible solution  - not necesseraly the optimal

1      2       3      4      5      6      7      8      9     10    11    12

Job 0

Job 1

Job 2

Machine 0

Machine 1

Machine 2



▪ Direct Encoding:

• List of starting times:

JSSP Solution Representation

55

Job Task Task Task

0 1 2 3

1 4 5 6

2 7 8

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9

3 5 6 2 3 8 3 7 10

Very ineffective encoding ; Mostly infeasible solutions will be generated 

Job
(Machine,
Duration)

(Machine,
Duration)

(Machine,
Duration)

0 (0,3) (1,2) (2,2)

1 (0,2) (2,1) (1,4)

2 (1,4) (2,3)



▪ Indirect Encoding:

• Job Sequence Matrix:

JSSP Solution Representation

56

Machine 0 Machine 1 Machine 2

1 0 2 1 0 1 2 0

Several solutions are represented by this encoding

In indirect encoding several solutions are 

represented by the same encoding. Some 

information on the solution is not explicitly 

represented. This will reduce the size of the 

original search space.

1      2       3      4      5      6      7      8      9     10    11    12

Job 0

Job 1

Job 2

M 0

M 1

M 2

1      2       3      4      5      6      7      8      9     10    11    12    14    15

Best Solution Another solution that can be obtained using the same job sequence



▪ How to obtain the best solution given a job sequence matrix? 

• A Gant chart can be represented as a disjunctive graph G=(V,C,D).

• V is the set of vertices corresponding to the tasks

• C is a set of conjunctive arcs between tasks of a job

• D is a set of disjunctive arcs between tasks to be processed on the same 
machine.

• A topological ordering algorithm can be used to determine the optimal 
critical path of a gant chart (represented as a disjunctive graph) 

JSSP Solution Representation
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Job
(Machine,
Duration)

(Machine,
Duration)

(Machine,
Duration)

0 (0,3) (1,2) (2,2)

1 (0,2) (2,1) (1,4)

2 (1,4) (2,3)



▪ Disjunctive graph solution representation

JSSP Solution Representation
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Machine 0 Machine 1 Machine 2

1 0 2 1 0 1 2 0



▪ Optimal critical path is given by the longest 
weighted path from s to t

JSSP Solution Representation
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Machine 0 Machine 1 Machine 2

1 0 2 1 0 1 2 0

4

4

2
2

Critical Path Length 
=4+4+2+2=12



▪ How to obtain the longest weighted path of a disjunctive graph?

▪ We can use a topological ordering algorithm

JSSP Solution Representation
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2|

0|

0|

8| 10|

2| 4|

4|

12|



▪ How to obtain the longest weighted path of a disjunctive graph?

▪ We can use a topological ordering algorithm

JSSP Solution Representation
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2|

0|

0|

8| 10|

2| 4|

4|

12|

2|5

0|2

0|0

8|8 10|10

2|3 4|4

4|7

12|12



▪ Permutation encoding

JSSP Move Operators
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Machine 0 Machine 1 Machine 2

1 0 2 1 0 1 2 0

• Swap/Exchange Operator

• Insertion Operator

• Inversion Operator



▪ Binary encoding – each bit represents the orientation of a disjunction arc 
in the disjunction graph 

JSSP Move Operators
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Arc 1
Arc 2

Arc 3

Arc 4

Arc 5

Arc 6

Arc 7

Arc 1 Arc 2 Arc 3 Arc 4 Arc 5 Arc 6 Arc 7

1 0 0 1 0 1 1

Arc 1 Arc 2 Arc 3 Arc 4 Arc 5 Arc 6 Arc 7

1 0 1 1 0 1 1



Optimizing Terminal Maneouvering Airspace Operations
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▪ TMA is designated area of controlled 
airspace surrounding a major airport 
where there is a high volume of traffic.

▪ It is a critical region - where all arriving 
aircraft from different entry points are 
merged and sequenced into an orderly 
stream towards the airport. 

▪ Departing flights also use the TMA 
region, therefore air traffic controllers 
must ensure that arrivals and 
departures do not conflict with each 
other

Radarbox website: https://www.radarbox.com/

https://www.radarbox.com/


▪ Aircraft flying in the TMA must follow pre-defined routes, designated as Standard 
Terminal Arrival Routes (STAR) and Standard Instrument Departure (SID) routes. 
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SIDs and STARs

Arrivals (STARs) Departures (SIDs)

STAR - Standard Terminal Arrival Route
SID – Standard Instrument Departure

CONFIDENTIAL
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ARAMA 1B

▪ Separation Requirements

CONFIDENTIAL

TMA Operations
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ARAMA 1B

CONFIDENTIAL

▪ Optimization-based approach

LEADING 

A/C

TRAILING A/C

Super 

Heavy
Heavy Medium Light

Super Heavy 2.5 6 7 8

Heavy 2.5 4 5 6

Medium 2.5 2.5 2.5 5

Light 2.5 2.5 2.5 2.5

TMA Operations
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ARAMA 1B

CONFIDENTIAL

3 NM

▪ Optimization-based approach

TMA Operations
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ARAMA 1B

CONFIDENTIAL

3 NM

Time-based Separation between 
Departures (e.g. 2 minutes)

▪ Optimization-based approach

3 NM

TMA Operations



Indirect Encoding
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Solution Space

Linear Optimization 
Model

Decoder

Aircraft Runway Sequencing

Flights 2 4 1 3 … 15 22

Solution representation: permutation encoding By fixing aircraft runway sequencing, 
aircraft speeds are optimized to minimize 
the amount of delays – the problem can be 
formulated as a linear optimization 
problem and can be solved in 30 seconds


