
Solution Encoding and Search Operators

1

Nuno Antunes Ribeiro

Assistant Professor

Solution Encoding

2

▪ Designing any iterative
metaheuristic needs an encoding
of a solution

▪ The encoding plays a major role
in the efficiency and effectiveness
of a metaheuristic procedure and
constitutes an essential step in
designing any metaheuristic.

▪ Many straightforward encodings
may be applied for some
traditional families of optimization
problems. Those representations
may be combined or underlying
new representations.

3

Search Operator

▪ The efficiency of a solution encoding
is also related to the search
operator.

▪ When defining a solution encoding,
one has to bear in mind how the
solution will be perturbed.

▪ Default search operators are often
considered – however more
sophisticated search operators may
be considered, especially when
solving problems with large solution
spaces and a significant number of
constraints.

Binary encoding – flip n bits
of the solution (typically 1 or
2 bits)

Discrete encoding – update
n bits of the solution by
randomly generating a new
value (typically 1 or 2 bits)

Permutation encoding – swap
the location of n elements
(typically 2 elements)

Real encoding – update n bits
of the solution by randomly
generating a new value within
a certain range (typically 2
elements)

1 0 … 1
Current
solution

1 1 … 1
New

solution

A F … A
Current
solution

A G … A
New

solution

1.2 2.4 … 0.8
Current
solution

New
solution

1.2 1.9 … 0.8

(A,B,C,D,E,F,G,H,I,J)Set of feasible
alternatives

rnd(-1,1)=-0.5
Random
number

A B … J
Current
solution

B A … A
New

solution

▪ Many sequencing, scheduling, planning and routing problems are
considered as permutation problems

▪ There are two main types of permutation problems:

• Priority Problems (e.g. scheduling) - In these problems permutations
represent a priority queue and the position in the solution is important

• Adjacency Problems (e.g. TSP) - In these problems permutations
represent an adjacency list - e.g. city “A” may be the first in the list, the
second, or the nth element in the list; the solution is the same provided
that all elements of the list are adjacent to the same pair of elements

▪ The efficiency of a neighbourhood is related not only to the
representation but also the type of problems to solve and
corresponding search operators

Search Operators in Permutation Problems

4

▪ Swap Operator

▪ Insertion Operator

▪ Inversion Operator

5

Search Operators in Permutation Problems

Used in both:

Priority and

Adjacency

Problems

▪ 2-Opt

6

Search Operators in Adjacency Problems

Only used in

Adjacency

Problems

▪ 3-Opt

7

Only used in

Adjacency

Problems

Search Operators in Adjacency Problems

▪ 3-Opt (2Opt Solutions)

8

Search Operators in Adjacency Problems

3-Opt Neighbourhood – 7 Solutions

Only used in

Adjacency

Problems

▪ 3-Opt (Generalization)

• Split the tour into 3 random parts (A – B – C)

• 3-Opt Solutions:

• A – inv(B) – inv(C)

• A – C – B

• A – C – inv(B)

• A – inv(C) – B

• 2-Opt Solutions:

• A – inv(B) – C

• A – B – inv(C)

• A – inv(C) – inv(B)

*inv stands for inversion

9

Search Operators in Adjacency Problems

1 2 3 4 5 6 7 8 9 10

A B C

1 2 3 4 5 7 6 10 9 8

1 2 3 4 5 8 9 10 6 7

1 2 3 4 5 7 6 8 9 10

1 2 3 4 5 6 7 10 9 8

1 2 3 4 5 8 9 10 7 6

1 2 3 4 5 10 9 8 6 7

1 2 3 4 5 10 9 8 7 6

Swap Operator vs 3-Opt Operator

10

Swap Operator

3-Opt Operator

Example

11

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

1 2 10 9 8 7 6 5 4 3 11 12 13 14 15 16

Optimal Solution

12

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

1 2 10 9 8 7 6 5 4 3 11 12 13 14 15 16

3-Opt Operator

13

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

1 2 10 9 8 7 6 5 4 3 11 12 13 14 15 16

A B C 3-Opt Solutions:
A – inv(B) – inv(C)
A – C – B
A – C – inv(B)
A – inv(C) – B

2-Opt Solutions:
A – inv(B) – C
A – B – inv(C)
A – inv(C) – inv(B)

3-Opt Operator

14

1

1 2 10 9 8 7 6 5 4 3 11 12 13 14 15 16

1 2 10 9 8 7 6 5 4 3 11 16 15 14 13 12

A rev(C) rev(B)

A B C

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

3-Opt Solutions:
A – inv(B) – inv(C)
A – C – B
A – C – inv(B)
A – inv(C) – B

2-Opt Solutions:
A – inv(B) – C
A – B – inv(C)
A – inv(C) – inv(B)

Swap Operator

15

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

1 2 10 9 8 7 6 5 4 3 11 12 13 14 15 16

1 2 10 9 8 7 6 5 4 3 11 16 15 14 13 12

Swap Operator

16

1

3
4

5

6

7

8

9 10

11

12

13

14

15
16

2

1 2 10 9 8 7 6 5 4 3 11 12 13 14 15 16

1 2 10 9 8 7 6 5 4 3 11 16 13 14 15 12

Swap Operator

17

1

3
4

5

6

7

8

9 10

11

12

13

14

15
16

2

1 2 10 9 8 7 6 5 4 3 11 16 13 14 15 12

1 2 10 9 8 7 6 5 4 3 11 16 15 14 13 12

Insertion Operator

18

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

1 2 10 9 8 7 6 5 4 3 11 12 13 14 15 16

1 2 10 9 8 7 6 5 4 3 11 16 15 14 13 12

Insertion Operator

19

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

1 2 10 9 8 7 6 5 4 3 11 12 13 14 15 16

1 2 10 9 8 7 6 5 4 3 11 16 12 13 14 15

Inversion Operator

20

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

1 2 10 9 8 7 6 5 4 3 11 12 13 14 15 16

1 2 10 9 8 7 6 5 4 3 11 16 15 14 13 12

21

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

1 2 10 9 8 7 12 13 14 15 16 6 5 4 3 11

1 2 10 9 8 7 6 5 4 3 11 16 15 14 13 12

Inversion vs 3-Opt Operator

Inversion vs 3-Opt Operator

22

1

3
4

5

6

7

8

9 10

11

12

13

14

15 16

2

1 2 10 9 8 7 12 13 14 15 16 6 5 4 3 11

1 2 10 9 8 7 6 5 4 3 11 16 15 14 13 12

A B C

A C rev(B)

3-Opt Solutions:
A – inv(B) – inv(C)
A – C – B
A – C – inv(B)
A – inv(C) – B

2-Opt Solutions:
A – inv(B) – C
A – B – inv(C)
A – inv(C) – inv(B)

K-Opt Operator in Python

23

Nuno Antunes Ribeiro

Assistant Professor

▪ Solution Representation: Premutation Encoding

▪ Search Operators: Swap 2 locations ; Insertion ; 3-Opt

▪ Replacement Procedure: First Descent ; First Descent ; Best Descent

TSP Example

24

Number of candidate locations
n=100

25

TSP – Hill Climbing
Generation Phase

Select two random locations
Swap location in the permutation

Select location to insert (i1)
Remove from permutation list
Insert in a new position in the permutation list

Follow the procedure
explained in slide 43

Explore the whole
neighbourhood (Best
Descent) and select
the best solution

TSP – Hill Climbing
Generation Phase

26

Generation Phase

(Search Operator Code)

Apply search operator

Compute Objective Value

TSP – Hill Climbing
Replacement Phase

27

Replacement Phase

(First Descent)

Hill Climbing

If objective value is worse than the
best objective value found in previous
iterations, then nothing happens;
otherwise we update the best solution

Plot

Keep trace of the objective
values obtained over time

TSP Solution (n=100)

28

TSP Solution (n=500)

29

Zoom

Constraint Handling

30

Nuno Antunes Ribeiro

Assistant Professor

▪ Dealing with constraints in optimization problems is an important topic for
the efficient design of metaheuristics.

▪ Indeed, many continuous and discrete optimization problems are
constrained, and it is not trivial to deal with those constraints.

Constraint Handling

31

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj 6

Obj7

Objects Knapsack Solution Encoding

Example Knapsack Problem:

Search Operator

Flip n bits of the solution

0 0 0 0 0 0 0

▪ Dealing with constraints in optimization problems is an important topic for
the efficient design of metaheuristics.

▪ Indeed, many continuous and discrete optimization problems are
constrained, and it is not trivial to deal with those constraints.

Constraint Handling

32

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj 6

Obj7

Objects Knapsack Solution Encoding

1 0 0 0 0 0 0

Search Operator

Flip n bits of the solution

Obj 1

Obj 3

Obj 5

Infeasible Solution

Example Knapsack Problem:

1 1

Knapsack

▪ Reject Strategies: represent a simple approach, where only feasible
solutions are kept during the search and then infeasible solutions are
automatically discarded. This kind of strategies are conceivable if the portion of
infeasible solutions of the search space is very small.

▪ Repairing strategies: A repairing procedure is applied to infeasible solutions
to generate feasible ones (e.g. extracting from the knapsack some elements to
satisfy the capacity constraint in the knapsack problem)

▪ Penalizing Strategies: reject strategies do not exploit infeasible solutions.
Indeed, it would be interesting to use some information on infeasible solutions to
guide the search. In penalizing strategies, infeasible solutions are considered
during the search process. The unconstrained objective function is extended by
a penalty function that will penalize infeasible solutions

▪ Preserving Strategies: In preserving strategies for constraint handling, a
specific representation and operators will ensure the generation of
feasible solutions. They incorporate problem-specific knowledge into the
representation and search operators to generate only feasible solutions

Constraint Handling Techniques

33

▪ Dealing with constraints in optimization problems is an important topic for
the efficient design of metaheuristics.

▪ Indeed, many continuous and discrete optimization problems are
constrained, and it is not trivial to deal with those constraints.

Reject Strategies

34

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj7

Objects Solution Encoding

1 0 0 0 0 0 0

Search Operator

Flip n bits of the solution

Obj 1

Obj 3

Obj 5

Example Knapsack Problem:

1 1

Rejection Strategy

Obj 6

Knapsack

▪ Reject Strategies: represent a simple approach, where only feasible
solutions are kept during the search and then infeasible solutions are
automatically discarded. This kind of strategies are conceivable if the portion of
infeasible solutions of the search space is very small.

▪ Repairing strategies: A repairing procedure is applied to infeasible solutions
to generate feasible ones (e.g. extracting from the knapsack some elements to
satisfy the capacity constraint in the knapsack problem)

▪ Penalizing Strategies: reject strategies do not exploit infeasible solutions.
Indeed, it would be interesting to use some information on infeasible solutions to
guide the search. In penalizing strategies, infeasible solutions are considered
during the search process. The unconstrained objective function is extended by
a penalty function that will penalize infeasible solutions

▪ Preserving Strategies: In preserving strategies for constraint handling, a
specific representation and operators will ensure the generation of
feasible solutions. They incorporate problem-specific knowledge into the
representation and search operators to generate only feasible solutions

Constraint Handling Techniques

35

▪ Dealing with constraints in optimization problems is an important topic for
the efficient design of metaheuristics.

▪ Indeed, many continuous and discrete optimization problems are
constrained, and it is not trivial to deal with those constraints.

Repairing strategies

36

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj7

Objects Solution Encoding

1 0 0 0 0 0 0

Search Operator

Flip n bits of the solution

Obj 1

Obj 3

Obj 5

Example Knapsack Problem:

1 1

Repairing Strategy

Obj 6

Knapsack

(Randomly select object to remove)

▪ Reject Strategies: represent a simple approach, where only feasible
solutions are kept during the search and then infeasible solutions are
automatically discarded. This kind of strategies are conceivable if the portion of
infeasible solutions of the search space is very small.

▪ Repairing strategies: A repairing procedure is applied to infeasible solutions
to generate feasible ones (e.g. extracting from the knapsack some elements to
satisfy the capacity constraint in the knapsack problem)

▪ Penalizing Strategies: The reject strategies do not exploit infeasible solutions.
Indeed, it would be interesting to use some information on infeasible solutions to
guide the search. In penalizing strategies, infeasible solutions are considered
during the search process. The unconstrained objective function is extended by
a penalty function that will penalize infeasible solutions

▪ Preserving Strategies: In preserving strategies for constraint handling, a
specific representation and operators will ensure the generation of
feasible solutions. They incorporate problem-specific knowledge into the
representation and search operators to generate only feasible solutions

Constraint Handling Techniques

37

▪ The objective function f may be penalized in a linear manner, where c(s)
represents the cost of the constraint violation and λ the weights given to
infeasibilities.

▪ Different penalty functions may be use:

• Violated constraints: A straightforward function is to count the
number of violated constraints. No information is used on how close
the solution is to the feasible region of the search space. (e.g. number
of bins with capacity violated in the bin-packing problem)

• Amount of infeasibility: Information on how close a solution is to a
feasible region is taken into account (e.g. how much the capacity of a
bin is exceeded in the bin-packing problem).

Penalizing Strategies

38

Penalizing Strategies

39

𝑤𝑖 𝑓𝑖

Obj 1 2 5

Obj 2 3.75 7

Obj 3 2.5 3

Obj 4 3 5

Obj 5 1 4

Obj 6 1.5 8

Obj 7 2.75 7

cap 4

𝜆

𝑐 𝑠 = −
𝑚𝑖𝑛 0, σ𝑖𝑤𝑖 − 𝐶𝑎𝑝

𝐶𝑎𝑝

𝑓 𝑠 =

𝑖

𝑓𝑖

𝜆𝑐 𝑠 = −
2 + 2.5 + 1 − 4

4
= −0.375

𝑓 𝑠 = 5 + 3 + 4 = 12

𝑓′(𝑠) = 𝟏𝟏. 𝟔𝟐𝟓

Infeasible Solution

𝑓′ 𝑠 = 𝑓 𝑠 + 𝜆𝑐(𝑠)

𝜆 = 1

5.5 kg

Penalizing Strategies

40

𝑤𝑖 𝑓𝑖

Obj 1 2 5

Obj 2 3.75 7

Obj 3 2.5 3

Obj 4 3 5

Obj 5 1 4

Obj 6 1.5 8

Obj 7 2.75 7

cap 4

𝑓 𝑠 =

𝑖

𝑓𝑖

𝜆𝑐 𝑠 = −4.125

𝑓 𝑠 = 39

𝑓′(𝑠) = 𝟑𝟒. 𝟖𝟕𝟓

Infeasible Solution

𝑓′ 𝑠 = 𝑓 𝑠 + 𝜆𝑐(𝑠)

𝜆 = 1

𝜆

16.5 kg

𝑐 𝑠 = −
𝑚𝑖𝑛 0, σ𝑖𝑤𝑖 − 𝐶𝑎𝑝

𝐶𝑎𝑝

Penalizing Strategies

41

𝑤𝑖 𝑓𝑖

Obj 1 2 5

Obj 2 3.75 7

Obj 3 2.5 3

Obj 4 3 5

Obj 5 1 4

Obj 6 1.5 8

Obj 7 2.75 7

cap 4

𝜆

𝑐 𝑠 = −
𝑚𝑖𝑛 0, σ𝑖𝑤𝑖 − 𝐶𝑎𝑝

𝐶𝑎𝑝

𝑓 𝑠 =

𝑖

𝑓𝑖

𝜆𝑐 𝑠 = −3.75

𝑓 𝑠 = 12

𝑓′(𝑠) = 𝟖. 𝟐𝟓

Infeasible Solution

𝑓′ 𝑠 = 𝑓 𝑠 + 𝜆𝑐(𝑠)

𝜆 = 10

5.5 kg

Penalizing Strategies

42

𝑤𝑖 𝑓𝑖

Obj 1 2 5

Obj 2 3.75 7

Obj 3 2.5 3

Obj 4 3 5

Obj 5 1 4

Obj 6 1.5 8

Obj 7 2.75 7

cap 4

𝑓 𝑠 =

𝑖

𝑓𝑖

𝜆𝑐 𝑠 = −41.25

𝑓 𝑠 = 39

𝑓′(𝑠) = −𝟐. 𝟐𝟓

Infeasible Solution

𝑓′ 𝑠 = 𝑓 𝑠 + 𝜆𝑐(𝑠)

𝜆 = 10

𝜆

16.5 kg

𝑐 𝑠 = −
𝑚𝑖𝑛 0, σ𝑖𝑤𝑖 − 𝐶𝑎𝑝

𝐶𝑎𝑝

Penalizing Strategies

43

𝑤𝑖 𝑓𝑖

Obj 1 2 5

Obj 2 3.75 7

Obj 3 2.5 3

Obj 4 3 5

Obj 5 1 4

Obj 6 1.5 8

Obj 7 2.75 7

cap 4

𝜆𝑐 𝑠 = −2.813

𝑓 𝑠 = 17

𝑓′ 𝑠 = 𝟏𝟒. 𝟏𝟖𝟕

Infeasible Solution

𝜆 = 10

4.5 kg

𝑓 𝑠 =

𝑖

𝑓𝑖

𝑓′ 𝑠 = 𝑓 𝑠 + 𝜆𝑐(𝑠)

𝜆

𝑐 𝑠 = −
𝑚𝑖𝑛 0, σ𝑖𝑤𝑖 − 𝐶𝑎𝑝

𝐶𝑎𝑝

Penalizing Strategies

44

𝑤𝑖 𝑓𝑖

Obj 1 2 5

Obj 2 3.75 7

Obj 3 2.5 3

Obj 4 3 5

Obj 5 1 4

Obj 6 1.5 8

Obj 7 2.75 7

cap 4

𝜆𝑐 𝑠 = 0

𝑓 𝑠 = 5 + 1 + 8 = 13

𝑓′ 𝑠 = 𝟏𝟑

Feasible solution, but worse objective value

𝜆 = 10

4.5 kg

𝑓 𝑠 =

𝑖

𝑓𝑖

𝑓′ 𝑠 = 𝑓 𝑠 + 𝜆𝑐(𝑠)

𝜆

𝑐 𝑠 = −
𝑚𝑖𝑛 0, σ𝑖𝑤𝑖 − 𝐶𝑎𝑝

𝐶𝑎𝑝

▪ The previously presented penalty functions do not exploit any information of
the search process. In adaptive penalty functions, knowledge on the search
process is included to improve the efficiency and the effectiveness of
the search.

Adaptative Penalization

45

▪ Example:

• The parameters 𝜆 is self-adjusting. Initially, the
parameter is initialized to 1.

• The parameters 𝜆 is reduced (resp. increased)
if the last 𝜇 visited solutions are all feasible
(resp. all infeasible), where µ is a user-defined
parameter. The reduction (resp. increase) may
consist in dividing (resp. multiplying) the actual
value by 2, for example.

𝜆

▪ Reject Strategies: represent a simple approach, where only feasible
solutions are kept during the search and then infeasible solutions are
automatically discarded. This kind of strategies are conceivable if the portion of
infeasible solutions of the search space is very small.

▪ Repairing strategies: A repairing procedure is applied to infeasible solutions
to generate feasible ones (e.g. extracting from the knapsack some elements to
satisfy the capacity constraint in the knapsack problem)

▪ Penalizing Strategies: The reject strategies do not exploit infeasible solutions.
Indeed, it would be interesting to use some information on infeasible solutions to
guide the search. In penalizing strategies, infeasible solutions are considered
during the search process. The unconstrained objective function is extended by
a penalty function that will penalize infeasible solutions

▪ Preserving Strategies: In preserving strategies for constraint handling, a
specific representation and operators will ensure the generation of
feasible solutions. They incorporate problem-specific knowledge into the
representation and search operators to generate only feasible solutions

Constraint Handling Techniques

46

▪ Constructing a solution encoding/search
operator that always guarantee that
feasible solutions are obtained, is often
not possible.

▪ Therefore, preserving strategies are not
an alternative in many cases

▪ Yet, before applying other constraint
handling techniques, one must think if it
is possible to design a solution
encoding/search operator that always
provide feasible solutions

▪ Let’s take a look on a classic example:
the N-Queens Puzzle

Preserving Strategies

47

▪ The N-Queens Puzzle problem consists
on putting N chess queens on an NxN
chessboard such that none of queens is
able to capture any other.

▪ By exhaustive search, the number of
possibilities is 648, that is over 4 billion
solutions (size of the search space)

▪ If we prohibit more than one queen per
row, then the search space will have 8 8

solutions, that is over 16 millions.

▪ If we forbid two queens to be both in the
same column or row, the encoding will
be reduced to 𝑛!, that is 40,320

Preserving Strategies

48

▪ Dealing with constraints in optimization problems is an important topic for
the efficient design of metaheuristics.

▪ Indeed, many continuous and discrete optimization problems are
constrained, and it is not trivial to deal with those constraints.

Preserving Strategies

49

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj7

Objects Solution Encoding

1 0 0 0 0 0 0

Search Operator

Flip n bits of the solution

Obj 1

Example Knapsack Problem:

1 1

Rejection Strategy

Obj 6

Knapsack

Obj 6

▪ A solution encoding must have the following characteristics:

• Completeness: all solutions associated with the problem must
be represented.

• Connexity: A search path must exist between any two solutions
of the search space. Any solution of the search space, especially
the global optimum solution, can be attained.

• Efficiency: The representation must be easy to manipulate by
the search operators. The time and space complexities of the
operators dealing with the representation must be reduced.

Solution Encoding and Search Operator

50

Solution encoding is key in metaheuristics performance – but also very problem specific!

Direct and Indirect Encoding

51

Nuno Antunes Ribeiro

Assistant Professor

▪ Indirect encoding is characterized by a lack of
details in the solution representation - i.e. some
information on the solution is not explicitly
represented.

▪ A decoder is required to express the solution
given by the encoding. According to the
information that is present in the indirect
encoding, the decoder has more or less work to
derive a complete solution

▪ Indirect encoding aims to reduce the size of the
original search space. They are particularly
popular in optimization problems dealing with
many constraints such as scheduling problems.

Direct vs Indirect Encoding

52

Solution Space

Decoder

P-median Problem

53

1 0 0 1 0 0 0 0 0

Solution Encoding

… …

▪ In the classical Job-Shop Problem there are n jobs that must be processed on m
machines. Each job consists of a sequence of different tasks. Each task needs
to be processed during an uninterrupted period of time on a given machine.

▪ Here is an example with m=3 machines and n=3 jobs. We count jobs, machines
and tasks starting from 0.

Job-Shop Scheduling Problem (JSSP)

54

Job (Machine,Duration) (Machine,Duration) (Machine,Duration)

0 (0,3) (1,2) (2,2)

1 (0,2) (2,1) (1,4)

2 (1,4) (2,3)

Gant Chart representing a feasible solution - not necesseraly the optimal

1 2 3 4 5 6 7 8 9 10 11 12

Job 0

Job 1

Job 2

Machine 0

Machine 1

Machine 2

▪ Direct Encoding:

• List of starting times:

JSSP Solution Representation

55

Job Task Task Task

0 1 2 3

1 4 5 6

2 7 8

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9

3 5 6 2 3 8 3 7 10

Very ineffective encoding ; Mostly infeasible solutions will be generated

Job
(Machine,
Duration)

(Machine,
Duration)

(Machine,
Duration)

0 (0,3) (1,2) (2,2)

1 (0,2) (2,1) (1,4)

2 (1,4) (2,3)

▪ Indirect Encoding:

• Job Sequence Matrix:

JSSP Solution Representation

56

Machine 0 Machine 1 Machine 2

1 0 2 1 0 1 2 0

Several solutions are represented by this encoding

In indirect encoding several solutions are

represented by the same encoding. Some

information on the solution is not explicitly

represented. This will reduce the size of the

original search space.

1 2 3 4 5 6 7 8 9 10 11 12

Job 0

Job 1

Job 2

M 0

M 1

M 2

1 2 3 4 5 6 7 8 9 10 11 12 14 15

Best Solution Another solution that can be obtained using the same job sequence

▪ How to obtain the best solution given a job sequence matrix?

• A Gant chart can be represented as a disjunctive graph G=(V,C,D).

• V is the set of vertices corresponding to the tasks

• C is a set of conjunctive arcs between tasks of a job

• D is a set of disjunctive arcs between tasks to be processed on the same
machine.

• A topological ordering algorithm can be used to determine the optimal
critical path of a gant chart (represented as a disjunctive graph)

JSSP Solution Representation

57

Job
(Machine,
Duration)

(Machine,
Duration)

(Machine,
Duration)

0 (0,3) (1,2) (2,2)

1 (0,2) (2,1) (1,4)

2 (1,4) (2,3)

▪ Disjunctive graph solution representation

JSSP Solution Representation

58

Machine 0 Machine 1 Machine 2

1 0 2 1 0 1 2 0

▪ Optimal critical path is given by the longest
weighted path from s to t

JSSP Solution Representation

59

Machine 0 Machine 1 Machine 2

1 0 2 1 0 1 2 0

4

4

2
2

Critical Path Length
=4+4+2+2=12

▪ How to obtain the longest weighted path of a disjunctive graph?

▪ We can use a topological ordering algorithm

JSSP Solution Representation

60

2|

0|

0|

8| 10|

2| 4|

4|

12|

▪ How to obtain the longest weighted path of a disjunctive graph?

▪ We can use a topological ordering algorithm

JSSP Solution Representation

61

2|

0|

0|

8| 10|

2| 4|

4|

12|

2|5

0|2

0|0

8|8 10|10

2|3 4|4

4|7

12|12

▪ Permutation encoding

JSSP Move Operators

62

Machine 0 Machine 1 Machine 2

1 0 2 1 0 1 2 0

• Swap/Exchange Operator

• Insertion Operator

• Inversion Operator

▪ Binary encoding – each bit represents the orientation of a disjunction arc
in the disjunction graph

JSSP Move Operators

63

Arc 1
Arc 2

Arc 3

Arc 4

Arc 5

Arc 6

Arc 7

Arc 1 Arc 2 Arc 3 Arc 4 Arc 5 Arc 6 Arc 7

1 0 0 1 0 1 1

Arc 1 Arc 2 Arc 3 Arc 4 Arc 5 Arc 6 Arc 7

1 0 1 1 0 1 1

Optimizing Terminal Maneouvering Airspace Operations

64

▪ TMA is designated area of controlled
airspace surrounding a major airport
where there is a high volume of traffic.

▪ It is a critical region - where all arriving
aircraft from different entry points are
merged and sequenced into an orderly
stream towards the airport.

▪ Departing flights also use the TMA
region, therefore air traffic controllers
must ensure that arrivals and
departures do not conflict with each
other

Radarbox website: https://www.radarbox.com/

https://www.radarbox.com/

▪ Aircraft flying in the TMA must follow pre-defined routes, designated as Standard
Terminal Arrival Routes (STAR) and Standard Instrument Departure (SID) routes.

65

SIDs and STARs

Arrivals (STARs) Departures (SIDs)

STAR - Standard Terminal Arrival Route
SID – Standard Instrument Departure

CONFIDENTIAL

66

ARAMA 1B

▪ Separation Requirements

CONFIDENTIAL

TMA Operations

67

ARAMA 1B

CONFIDENTIAL

▪ Optimization-based approach

LEADING

A/C

TRAILING A/C

Super

Heavy
Heavy Medium Light

Super Heavy 2.5 6 7 8

Heavy 2.5 4 5 6

Medium 2.5 2.5 2.5 5

Light 2.5 2.5 2.5 2.5

TMA Operations

68

ARAMA 1B

CONFIDENTIAL

3 NM

▪ Optimization-based approach

TMA Operations

69

ARAMA 1B

CONFIDENTIAL

3 NM

Time-based Separation between
Departures (e.g. 2 minutes)

▪ Optimization-based approach

3 NM

TMA Operations

Indirect Encoding

70

Solution Space

Linear Optimization
Model

Decoder

Aircraft Runway Sequencing

Flights 2 4 1 3 … 15 22

Solution representation: permutation encoding By fixing aircraft runway sequencing,
aircraft speeds are optimized to minimize
the amount of delays – the problem can be
formulated as a linear optimization
problem and can be solved in 30 seconds

