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▪ In general, local search is a very easy method to design and 
implement and gives fairly good solutions very quickly. This is why it 
is a widely used optimization method in practice

▪ One of the main disadvantages of LS is that it converges toward 
local optima.

▪ Moreover, the algorithm can be very sensitive to the initial 
solution; that is, a large variability of the quality of solutions may be 
obtained for some problems.

▪ Local search works well if there are not too many local optima in the 
search space or the quality of the different local optima is more or 
less similar. 

▪ If the objective function is highly multimodal, which is the case for the 
majority of optimization problems, local search is usually not an 
effective method to use.
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Convergence to Local Optima 
Basic Example
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▪ We aim to minimize a continuous function with multiple local optima

𝒇 𝒙 = 𝒔𝒊𝒏(𝒙) + 𝐬𝐢𝐧(𝟑. 𝟑𝟑𝒙)



Multistart Local Search
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▪ We aim to minimize a continuous function with multiple local optima

𝒇 𝒙 = 𝒔𝒊𝒏(𝒙) + 𝐬𝐢𝐧(𝟑. 𝟑𝟑𝒙)

Convergence to Local Optima 
Basic Example

Function to 
compute the 
objective value

Plot continuous 
function
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Convergence to Local Optima 
Generate Initial Solution

Generate initial 
solution within 
the specified 
input range

Compute the 
objective 
solution of the 
initial solution

Initial solution 
is both: the 
current solution 
and the best 
solution found 
so far
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Convergence to Local Optima 
Hill Climbing

Neighbourhood 
step size

Generate random solution 
within the neighbrood

Compute objective value of the 
new candidate solution

Check if the new candidate 
solution is better than the best 
solution found so far; If yes, 
update the best solution found
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Convergence to Local Optima 
Local Optima

Seed = 1
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Convergence to Local Optima 
Local Optima

Seed = 2
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Convergence to Local Optima 
Local Optima

Seed = 10



Multistart Local Search
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▪ To escape local optima, local search algorithms can be initialize several times

▪ As we can generate local optima with high variability, eventually, after many 
initializations, the algorithm will find the local optima that corresponds to the 
global optima

1. While (termination criteria (1) is not met)

2. Initialize: Generate random initial solution, 𝑝𝑏𝑒𝑠𝑡
3. While (termination criteria (2) is not met)

4. Generate a new solution (or a set of new solutions) 𝑝𝑛𝑒𝑤 by 
applying a small perturbation (search operator) to 𝑝𝑏𝑒𝑠𝑡

5. If 𝑝𝑛𝑒𝑤 is better than 𝑝𝑏𝑒𝑠𝑡, than 𝑝𝑏𝑒𝑠𝑡= 𝑝𝑛𝑒𝑤
6. Go back to 3, until termination criteria (2) is not met

7. Go back to 2, until termination criteria (1) is not met



Multistart Local Search – Random Sampling
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The Ackley function is widely 

used for testing optimization 

algorithms. In its two-dimensional 

form, as shown in the plot, it is 

characterized by a nearly flat 

outer region, and a large hole at 

the centre. The function poses a 

risk for optimization algorithms, 

particularly hillclimbing

algorithms, to be trapped in one 

of its many local minima.

Source: http://www.sfu.ca/~ssurjano/ackley.html

http://www.sfu.ca/~ssurjano/ackley.html


▪ Random walks are like hill climbers, with the exception that they do not 
use the objective function to guide the search direction.

▪ Start at a (random) location and take random steps

Random Walks
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Annealing Process

16Source: http://iao.hfuu.edu.cn/teaching/lectures/metaheuristic-optimization

http://iao.hfuu.edu.cn/teaching/lectures/metaheuristic-optimization


▪ The annealing process requires heating and then 
slowly cooling a substance to obtain a strong 
crystalline structure. The strength of the structure 
depends on the rate of cooling metals.

▪ If the initial temperature is not sufficiently 
high or a fast cooling is applied, imperfections 
(metastable states) are obtained. 

▪ In this case, the cooling solid will not attain 
thermal equilibrium at each temperature. Strong 
crystals are grown from careful and slow 
cooling. 

▪ The Simulated Annealing algorithm simulates the 
energy changes in a system subjected to a 
cooling process until it converges to an 
equilibrium state (steady frozen state). This 
scheme was developed in 1953 by Metropolis 

Annealing Process
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▪ In 1953, three American researchers (Metropolis, Rosenbluth, and Teller) 
developed an algorithm to simulate the physical annealing.

▪ Their aim was to reproduce faithfully the evolution of the physical 
structure of a material undergoing annealing.

▪ Starting from an initial state 𝑖 of energy 𝐸𝑖, a new state j of energy 𝐸𝑗 is 
generated by modifying the position of one particle.

▪ If the energy difference, 𝐸𝑖 − 𝐸𝑗, is positive, the state 𝑗 becomes the new 
current state. If the energy difference is less than or equal to zero, then 
the probability that the state 𝑗 becomes the current state is given by:

▪ Where 𝑇 represents the temperature of the solid and 𝑘𝐵 is the 
Boltzmann constant (1.38×10−23 joule/Kelvin)

Metropolis Simulation
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▪ SA replicates the annealing process by enabling under some conditions the 
degradation of a solution. The goal is to escape from local optima. 

Simulated Annealing in Optimization
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▪ It uses a control parameter, called 

temperature, to determine the 

probability of accepting non-

improving solutions. 

▪ The temperature is gradually 

decreased according to a cooling 

schedule such that few non-

improving solutions are accepted 

at the end of the search. 

Fitness Landscape 𝑃 Δ𝐸 = ൝ 𝑒−
ΔE
𝑻 𝑖𝑓 Δ𝐸 > 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



▪ The objective function of the problem 
is analogous to the energy state of the 
system. 

▪ A solution of the optimization problem 
corresponds to a system state.

▪ The decision variables associated with 
a solution of the problem are analogous 
to the molecular positions. 

▪ The global optimum corresponds to the 
ground state of the system. 

▪ Finding a local minimum implies that a 
metastable state has been reached

Metaheuristic - Simulated Annealing
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▪ Escaping local optima: The higher the temperature the higher the probability 
of accepting a worst move. 

▪ Better move is always accepted 𝑷 = 𝟏

▪ ∆E is the objective value difference between the new 𝒇(𝒙′) and old candidate 
solution 𝒇(𝒙)

∆𝐸 = 𝑓(𝑥′) − 𝑓(𝑥)

▪ Temperature T reduced according to a specific schedule over the iterations
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Simulated Annealing

𝑃 Δ𝐸 = ൝ 𝑒−
ΔE
𝑻 𝑖𝑓 Δ𝐸 > 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Cooling Schedule
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Exploration

Exploitation
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Cooling Schedule

𝑓 𝑇 = 1 − 𝛼 𝑖𝑡𝑇𝑠𝑡𝑎𝑟𝑡

[LN]

[EXP]

[POLY]

𝑓 𝑇 =
𝑇start
𝑖𝑡

[RAT]

𝑓 𝑇 = 1 −
𝑖𝑡

𝑖𝑡𝑚𝑎𝑥

𝛼

𝑇𝑠𝑡𝑎𝑟𝑡

𝑓 𝑇 = ൞

𝑇𝑠𝑡𝑎𝑟𝑡 𝑖𝑓 𝑖𝑡 < 𝑛
𝑇𝑠𝑡𝑎𝑟𝑡
ln 𝑖𝑡

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇𝑠𝑡𝑎𝑟𝑡 - initial temperature
𝑖𝑡 – current iteration
𝑖𝑡𝑚𝑎𝑥-maximum number of iterations
𝛼- calibration parameter



▪ If temperature decreases slowly, convergence to the global optimum 
has been proven for various optimization problems. However, the 
number of function evaluations needed to find the optimum may be 
higher than what an exhaustive enumeration would need.

▪ Faster cooling schedules lose guaranteed convergence but progress 
much faster: Simulated Annealing becomes almost a local search 
algorithm.

Cooling Schedule
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▪ Escaping local optima: The higher the temperature the larger the probability 
of accepting non-improving solutions

1. Initialize: Generate initial solution, 𝑝𝑏𝑒𝑠𝑡
2. While (termination criteria (2) is not met)

3. Generate a new solution (or a set of new solutions) 𝑝𝑛𝑒𝑤 by applying a 
small perturbation (search operator) to 𝑝𝑏𝑒𝑠𝑡

4. If 𝑝𝑛𝑒𝑤 is better than 𝑝𝑏𝑒𝑠𝑡, than update 𝑝𝑏𝑒𝑠𝑡= 𝑝𝑛𝑒𝑤

5. Else update 𝒑𝒃𝒆𝒔𝒕= 𝒑𝒏𝒆𝒘 with a probability 𝒆−
𝚫𝑬

𝑻

6. Update temperature T applying a cooling schedule function

7. Go back to (4), until termination criteria (3) is not met

25

Simulated Annealing Algorithm



Escaping Local Optima 
Simulated Annealing

26

Neighbourhood 
step size

Generate random solution 
within the neighbood

Compute objective value of the 
new candidate solution

Check if the new candidate solution is 
better than the best solution found so far; 
If yes, update the best solution found
If not, compute the probability of accepting 
the new candidate solution.

Initial 
Temperature

Accept the new candidate solution 

with with a probability 𝒆−
𝜟𝑬

𝑻
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Random Seed Hill Climbing Simulated Annealing Random Walks

1 0.009 -1.729 -1.989

2 -1.728 -1.989 -1.989

3 0.106 -1.899 -1.989

4 -1.487 -1.729 -1.989

5 0.148 -1.988 -1.989

6 -0.859 -1.729 -1.989

7 0.014 -1.729 -1.989

8 -0.119 -1.729 -1.989

9 -1.49 -1.727 -1.989

10 -1.989 -1.989 -1.989

Not an interesting problem

Escaping Local Optima 
Simulated Annealing



Simulated Annealing in Python
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▪ Solution Representation: Binary Encoding

▪ Move Operator: Open a random 1 location and close a random location

▪ Replacement Procedure: First Descent

P-Median Example

29

Number of candidate locations
n=100

Number of locations to open
fac=15



P-Median Example
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ΔE𝑖 = 𝑂𝑏𝑗𝑉𝑎𝑙𝑅𝑎𝑛𝑑 − 𝑂𝑏𝑗𝑉𝑎𝑙𝐻𝑖𝑙𝑙𝐶𝑙𝑖𝑚𝑏𝑖𝑛𝑔

𝑃 = 𝑒−
ΔE
𝑇 ⟺ ln(𝑃) = −

ΔE

𝑇

𝑃𝑖 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑒

ln 𝑃𝑖 = −
ΔE𝑖
𝑇𝑖

⟺ 𝑇𝑖 = −
ΔE𝑖
ln 𝑃𝑖



P-Median Example
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Select randomly a 
location to open

Identify the nearest location to the new 
location to open – location to close

Update binary vector 
of locations



P-Median Example
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Check if the new candidate solution is 
better than the best solution found so far; 
If yes, update the best solution found
If not, Accept the new candidate solution  

with a probability 𝒆−
𝜟𝑬

𝑻

Compute probability 𝒆−
𝜟𝑬

𝑻



P-Median Example
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Hill Climbing Simulated Annealing

Obj. Value = 162,325,709.91 (Gap = 0.58%)

Optimum= 161,393,599.84 (321 seconds)

Obj. Value = 161,530,034.29 (Gap = 0.08%)



P-Median Example
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Hill Climbing Simulated Annealing

Obj. Value = 443,792,460.62

Optimum= Memory Error

Obj. Value = 441,252,999.99



▪ Solution Representation: Premutation Encoding

▪ Move Operators: Swap 2 locations ; Insertion ; 3-Opt

▪ Replacement Procedure: First Descent ; First Descent ; Best Descent 

TSP Example
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Number of candidate locations
n=100



TSP Example
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Move Operator

Initial Temperature

Compute Objective Value for 

New Solution
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Update Temperature

Compute Acceptance Probability

Update Solution If Random 

number smaller than acceptance 

probability

TSP Example



TSP Solution (n=100)
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TSP Solution (n=500)
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Simulated Annealing Variants
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▪ The cooling schedules presented so far are static in the sense that they 
are defined completely a priori. 

▪ In an adaptive cooling schedule, the decreasing rate is dynamic and 
depends on some information obtained during the search.

▪ Example:

Adaptive Cooling Schedule

41

𝑃 Δ𝐸 = ൝𝛼 + 𝑒−
ΔE
𝑇 𝑖𝑓 Δ𝐸 > 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝛼 is a auxiliary value added to the metropolis probability every time the 
objective value is not improved in 𝑀 iterations (i.e. min

i∈𝑀
ΔEi > 0 if we are dealing 

with a minimization problem).

if min
i∈𝑀

ΔEi > 0 then 𝛼 = 𝛼 + b else 𝛼 = 0



Simulated Annealing Variants
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Simulated Annealing Variants
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▪ Threshold Accepting: TA escapes from local optima by accepting solutions that are not 
worse than the current solution by more than a given threshold Q.

▪ Record-to-Record Travel: RRT accepts a non improving neighbor solution with an objective 
value less than the RECORD minus a deviation 𝜹. RECORD represents the best objective 
value of the visited solutions during the search. 

▪ Great Deluge Algorithm The inspiration of the GDA algorithm comes from the analogy that 
the direction a hill climber would take in a great deluge to keep his feet dry. As it rains 
incessantly without end, the level of the water increases. The algorithm never makes a move 
beyond the water level. The initial value of the water level is equal to the initial objective value. 
During the search, the value of the level is decreased monotonically. The decrement of the 
reduction is a parameter of the algorithm.

▪ Demon Algorithms: The acceptance function is based on the energy value of the demon 
(credit). The demon credit is initialized with a given value. A nonimproved solution is 
accepted if the demon has more credits than the decrease of the objective value. When a 
DA algorithm accepts a solution of increased objective value, the change value of the 
objective is credited to the demon. In the same manner, when a DA algorithm accepts an 
improving solution, the decrease of the objective value is debited from the demon.



Simulated Annealing Variants
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▪ Demon Algorithms: The acceptance function is based on the energy value of the 
demon (credit). The demon credit is initialized with a given value. A nonimproved 
solution is accepted if the demon has more credits than the decrease of the 
objective value. When a DA algorithm accepts a solution of increased objective value, 
the change value of the objective is credited to the demon. In the same manner, 
when a DA algorithm accepts an improving solution, the decrease of the 
objective value is debited from the demon.

▪ Demon Algorithm Variants


