Escaping Local Optima

Nuno Antunes Ribeiro
Assistant Professor

ST =N

SINGAPORE UNIVERSITY OF
TECHNOLOGY AND DESIGN

Escaping Local Optima

= |n general, local search is a very easy method to design and
Implement and gives fairly good solutions very quickly. This is why it
IS a widely used optimization method in practice

= One of the main disadvantages of LS is that it converges toward
local optima.

= Moreover, the algorithm can be very sensitive to the initial
solution; that is, a large variability of the quality of solutions may be
obtained for some problems.

= Local search works well if there are not too many local optima in the
search space or the quality of the different local optima is more or
less similar.

= |f the objective function is highly multimodal, which is the case for the
majority of optimization problems, local search is usually not an
effective method to use.

Convergence to Local Optima

Basic Example

= We aim to minimize a continuous function with multiple local optima

f(x) = sin(x) + sin(3.33x) 20 W n A ﬁ
15 - \ A ﬂ

m n |
TR
0.0 - n \H ﬂ Un

sl v
SR u y u

20 -15 -10 -5 0 5 10 15 20

Multistart Local Search

A Objective

Initial solution

- Local search

Initial solution
' Local search

First local optimum

Final solution

- - >

Search space

Convergence to Local Optima

Basic Example

= We aim to minimize a continuous function with multiple local optima

f(x) = sin(x) + sin(3.33x) 20 \ W L ﬂ A ﬁ

ol | nw M\

0.0 “ n \ f\ | | U \ \ f | | |
-0.5 U
o] | |

TR V U
o B A A

20 -15 -10 -5 0 5 10 15 20

Convergence to Local Optima

Basic Example

= We aim to minimize a continuous function with multiple local optima

Function to
f(x) = sin(x) + sin(3.33x) compute the

objective value

20 4
objective function ” n ﬂ n
def objective(x): 15 n n
return sin(x) + sin((10.0 / 3.0) * x) 10 - \

define range for input 051 f f
r_min, r_max = -20, 20 0.0 - \J N
sample input range uniformly at 0.1 increments
. i -0.5 4
inputs = arange(r_min, r_max, 0.1)
compute targets -1.0 - \ f f
results = objective(inputs) U “
create a lLine plot of input vs result Plot continuous’ u u u u
pyplot.plot(inputs, results) function -2.0 -

Convergence to Local Optima

Generate Initial Solution

seed the pseudorandom number generator Lo
seed(1) Generate initial

solution within

define range for input the specified
bounds = asarray([[-20.0, 20.0]]) ’ input range

generate an initial point
best = bounds[:, @] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, @])

L . Compute the
evaluate the initial point bi]
best_eval = objective(best) objective
solution of the

current working solution initial solution
curr, curr_eval = best, best eval

Initial solution
is both: the
current solution
and the best
solution found
so far

Convergence to Local Optima

Hill Climbing

seed the pseudorandom number generator
seed(1)
define the total iterations

n_iterations = 100000 Neighbourhood
define the maxt, "step size
step size = 0.1

scores = list()

run the algorithm

for i in range(n_iterations): Generate random solution
take a step ’ within the neighbrood
candidate = curr + randn(len(bounds)) * step size

evaluate candidate point e 1.
candidate_eval = objective(candidate) Compute objective value of the

check for new best solution new candidate solution
if candidate eval < best eval:

store new best point “

best, best eval = candidate, candidateeval

i keep track QJC Sscores CheCk if the new candidate
scores.append(best_eval) solution is better than the best

solution found so far; If yes,
update the best solution found

Convergence to Local Optima

| ocal Optima

min(scores)

array([@.00999143])

Seed =1
Lline plot of best scores

pyplot.plot(scores, '-')

pyplot.xlabel (' Improvement Number')

pyplot.ylabel('Evaluation f(x)")

pyplot.show()

=]
o

- ﬂﬂnﬂn

10
05 - f
-0.5 -
-1.0 { \
— -15 |

-2.0 1

Evaluation fi{x)
o o
= (=]
%
c—:

o
M

=

[=]
e

e
L —

all—

L
[e

0 20000 | 40000 e0000 80000 100000 _2'0 —i5 -iO _'5 6 :'5 lb 1’5 2b
mprovement Number

Convergence to Local Optima

| ocal Optima

min(scores)

array([-1.72814962])

Seed =2
Line plot of best scores
pyplot.plot(scores, '-")
pyplot.xlabel (' Improvement Number')
pyplot.ylabel(Evaluation f(x)")
pyplot.show()

s - . | ||

-1.40 10 \
E -1.45 - 05 -
g ~1.50 1 00
2
5 -155] -05 -
=
o e -10
~1.70 - U U
-2.0 -
0 20000 40000 60000 80000 100000 -20 -15 -10 -5 0 5 10 15 20

Improvement Number

10

Convergence to Local Optima

| ocal Optima

min(scores)

array([-1.98885512])

Seed =10

Line plot of best scores
pyplot.plot(scores, '-")
pyplot.xlabel(" Improvement Number')
pyplot.ylabel('Evaluation f(x)")
pyplot.show()

~1.98885 20 A ” n
00000042 { | 15 1 n n n
10 1
~0.0000044
= 0.5 1
=
S ~0.0000046 - 0.0 -
m
2 =05
& —0.0000048 -
-1.0 1
~0.0000050 - A5 4 U & U u U U
-2.0 1

0 20000 40000 60000 80000 100000 20 -15 -10 -5 ©0 5 10 15 20
Improvement Number

11

Multistart Local Search

= To escape local optima, local search algorithms can be initialize several times

= As we can generate local optima with high variability, eventually, after many

Initializations, the algorithm will find the local optima that corresponds to the
global optima

1. While (termination criteria (1) is not met)
2. Initialize: Generate random initial solution, py.;
3. While (termination criteria (2) is not met)

4. Generate a new solution (or a set of new solutions) p,,.,, by
applying a small perturbation (search operator) to pyes;

5. If p,ey 1S Detter than py.q¢, than pyesi= Prew
6. Go back to 3, until termination criteria (2) iIs not met
s 7 Go back to 2, until termination criteria (1) is not met

12

Multistart Local Search — Random Sampling

Ackley Function

The Ackley function is widely
used for testing optimization
algorithms. In its two-dimensional
form, as shown in the plot, it is
characterized by a nearly flat
outer region, and a large hole at
the centre. The function poses a
risk for optimization algorithms,
particularly hillclimbing
algorithms, to be trapped in one
of its many local minima.

fz1.x2)

%2 40 40

x1

Pt g
f(x) = —aexp | —b C—i;xf —exp(E;cos(cxi))-i—a+exp(l)

Source: http://www.sfu.ca/~ssurjano/ackley.html 13

http://www.sfu.ca/~ssurjano/ackley.html

Random Walks

= Random walks are like hill climbers, with the exception that they do not
use the objective function to guide the search direction.

= Start at a (random) location and take random steps

% i |

i

2.0 1

14

Simulated Annealing

Nuno Antunes Ribeiro

Assistant Professor

= |UIh=]

SINGAPORE UNIVERSITY OF
TECHNOLOGY AND DESIGN

ang.

neering Systems
Design

15

Annealing Process

Source: http://iao.hfuu.edu.cn/teaching/lectures/metaheuristic-optimi

http://iao.hfuu.edu.cn/teaching/lectures/metaheuristic-optimization

Annealing Process

The annealing process requires heating and then
slowly cooling a substance to obtain a strong
crystalline structure. The strength of the structure
depends on the rate of cooling metals.

If the initial temperature is not sufficiently
high or a fast cooling is applied, imperfections
(metastable states) are obtained.

In this case, the cooling solid will not attain
thermal equilibrium at each temperature. Strong
crystals are grown from careful and slow
cooling.

The Simulated Annealing algorithm simulates the
energy changes in a system subjected to a
cooling process until it converges to an
equilibrium state (steady frozen state). This
scheme was developed in 1953 by Metropolis

Liquid State

Liquid State

Wﬂing

——

t
messs——]>

Solid State : Metastable

Solid State : Crystal

Minimum Energy

17

Metropolis Simulation

= |n 1953, three American researchers (Metropolis, Rosenbluth, and Teller)
developed an algorithm to simulate the physical annealing.

= Their aim was to reproduce faithfully the evolution of the physical
structure of a material undergoing annealing.

= Starting from an initial state i of energy E;, a new state] of energy E; Is
generated by modifying the position of one particle.

= |f the energy difference, E; — E;, IS positive, the state j becomes the new

current state. If the energy difference is less than or equal to zero, then
the probabillity that the state j becomes the current state is given by:

E;—E;
e(kp-T)
= Where T represents the temperature of the solid and kg Is the
Boltzmann constant (1.38x10-23 joule/Kelvin)

18

Simulated Annealing in Optimization

= SAreplicates the annealing process by enabling under some conditions the
degradation of a solution. The goal is to escape from local optima.

AE

Fitness Landscape P(AE) = e T if AE >0
N 1 otherwise

= |t uses a control parameter, called
temperature, to determine the
probability of accepting non-
Improving solutions.

= The temperature is gradually
decreased according to a cooling
schedule such that few non-
Improving solutions are accepted
at the end of the search.

19

Metaheuristic - Simulated Annealing

= The objective function of the problem

IS analogous to the energy state of the Physical System

Optimization Problem

system.
. o System state
= Asolution of the optimization problem 1. iccular positions

corresponds to a system state. Energy

= The decision variables associated with Ground state
a solution of the problem are analogous Metastable state

to the molecular positions. Rapid quenching
= The global optimum corresponds to the Temperature |
ground state of the system. Careful annealing

Solution

Decision variables
Objective function
Global optimal solution
Local optimum

Local search

Control parameter T
Simulated annealing

= Finding a local minimum implies that a
metastable state has been reached

20

Simulated Annealing

= Escaping local optima: The higher the temperature the higher the probability
of accepting a worst move.

_AE
e T if AE >0

= Better move is always accepted P = 1 P(AE) = { .
1 otherwise

= AE is the objective value difference between the new f(x') and old candidate

solution f(x) AE = F(¥) — FOO)
= f(x) — f(x

= Temperature T reduced according to a specific schedule over the iterations

21

Cooling Schedule

7% %z N >
Temperature
A
Exploration
\A%\?\/\Ag

/ Exploitation

t 1 1 1 f » Time

22

T (Temperature)

Tstqrt - initial temperature

C O O I I n g S C h e d u I e ;i,;aiu-:;i\?(:r:j;itrﬁzber of iterations

500

400

300
200

100

a- calibration parameter

(Tstart if it<n
T [LN]
f(T) =+ YA otherwise
Kln(lt)
FT) = (1= @) *Tygare =P
a
f(T) = (1 -) Tstart [POLY]
Umax
ey ' Tt t RAT
_ *r:::,_.h f(T) = Sl- ? - | |
_—~— """:"kr:-‘:- o __ —— — =N EXP_0.05
| _, _____ ~---EXP_0.025 - POLY 2
20 40 60 g0 100 "POLY-1 —RAT

t (iterations)

23

Cooling Schedule

= |ftemperature decreases slowly, convergence to the global optimum
has been proven for various optimization problems. However, the
number of function evaluations needed to find the optimum may be
higher than what an exhaustive enumeration would need.

= Faster cooling schedules lose guaranteed convergence but progress
much faster: Simulated Annealing becomes almost a local search
algorithm.

24

Simulated Annealing Algorithm

= Escaping local optima: The higher the temperature the larger the probability
of accepting non-improving solutions

1. Initialize: Generate initial solution, py..;
2. While (termination criteria (2) is not met)

3. Generate a new solution (or a set of new solutions) p,,.,, by applying a
small perturbation (search operator) to pyest

If ...\, IS better than p, .., than update pyesi= Prew
AE

Else update ppesi= Pnew With a probability e 1
Update temperature T applying a cooling schedule function
Go back to (4), until termination criteria (3) is not met

N o o b

25

Escaping Local Optima o T
Simulated Annealing

seed the pseudorandom number generator 0.5 -

seed(randseed)

define the total iterations Neighbourhood 0.0 1

n_iterations = 108000

define the maxim step size =0.5 1
step size = 0.1

initial temperatu -1.0 4
temp =1068 H

scores = 11 Initial -1.5 1

it T=0 Temperature - V u

tp=temp
run the algorithm Y [y T T
for i in range(n_iterations): Generate random Sowtlm -10 -5
take a step _ within the neighbood
candidate = curr + randn(len(bounds)) * step size

evaluate candidate point . .
candidate eval = objective(candidate) h compute Objectlve value of the
check for new best solution new candidate SOIUtion

if candidate_eval < best_eval:
store new best point
best, best eval = candidate, Candi -

difference between candidate and current point -Check.if the new candidate solution is
diff = did 1 - 1 .
Qs el better than the best solution found so far;

calculate temperature for current iteration

if it T»>100: H
to» e / Flost(i + 1) If yes, update the best solution found

it_T=0 If not, compute the probability of accepting
it_T=it_T+1 . .
calculate metropolis acceptan:m the new candidate solution.

metropolis = exp(-diff / tp)

check if we should keep the new point . e
A GIFF < 9 or rand() < metropolis: “Accept the new candidate solution

store the new current point AE

curr, curr_eval = candidate, candidate eval With With a probability e_T
keep track of scores
scores.append(curr_eval)

[B

Escaping Local Optima

Simulated Annealinc

Random Seed Hill Climbing Simulated Annealing Random Walks
1 0.009 -1.729 -1.989
2 -1.728 -1.989 -1.989
3 0.106 -1.899 -1.989
4 -1.487 -1.729 -1.989
5 0.148 -1.988 -1.989
6 -0.859 -1.729 -1.989
14 0.014 -1.729 -1.989
8 -0.119 -1.729 -1.989
9 -1.49 -1.727 -1.989
10 -1.989 -1.989 -1.989

e

Not an interesting problem -

Simulated Annealing in Python

Nuno Antunes Ribeiro

Assistant Professor

= |UIh=]

SINGAPORE UNIVERSITY OF
TECHNOLOGY AND DESIGN

ang.

neering Systems
Design

28

P-Median Example

= Solution Representation: Binary Encoding
= Move Operator: Open a random 1 location and close a random location

= Replacement Procedure: First Descent

Number of candidate locations
n=100

Number of locations to open
fac=15

| N
al
g

- -
! W
- b g
-

w

©

é

29

P-Median Example

random. seed(1)

iteration=8@

objvalue_i=objvalue

objvaluelist=objvalue

program_starts = time.time()

coutime J20

temp=821687323 #(InitialSol-LocalSearchSol)/Ln(8.9);(26295266-18983919)/Ln(0.9)=69393614 :(230942655-165441358)/Ln(0.9)=6216873]
—lonrer

#temp=166060060000006000PPBOOHHBEOBHOHBEBBEOBEBHBBOO

it t=0

tp=temp

fwhile (it_t)<600:

while iteration<100000: _AE AE
P=e T & 1n(p)=_T

iteration=iteration+1

vi_open_i=copy.deepcopy(yi_open)
yi_i=np.zeros([n, 1])

#Select new location to open AEl — OijalRand — OijalHillClimbing
vi new _open = random.sample(range(@, n), 1)
yvi_new_open = np.sort(yi_new_open)

P; = Initial Acceptance Rate

#Identify the location to close (nearest to the new location)

index_new_closed=np.argmin(distancelct open[:,vi_new open])

#0pen and close 1 locations ln(P) - _ A l ST = — AEl
yi open_i[index_new closed]=yi new_open l . l 111(13.)
yi open_i=np.sort(yi_open_i) l l
vi i[yi_open_il=1

#Re-Allocate locations to the closest open location

distancelct_open=distancelct[np.where(yi_i)[0]]

assignment_open=np.argmin(distancelct_open, axis=0)

objvalue open=distancelct _open.min(axis=0)*demandlct

objvalue=sum(objvalue open) :3()

P-Median Example

random. seed(1)

iteration=8@

objvalue_i=objvalue

objvaluelist=objvalue

program_starts = time.time()

cputime i=@

temp=821687323 #(InitialSol-LocalSearchSol)/Ln(8.9);(26295266-18983919)/Ln(0.9)=69393614 ;(230942655-165441358)/Ln(0.9)=6216873:
#temp=1
#temp=166060060000006000PPBOOHHBEOBHOHBEBBEOBEBHBBOO
it t=0

tp=temp

fwhile (it_t)<600:

while iteration<100600:

iteration=iteration+1

vi_open_i=copy.deepcopy(yi_open) Select randomly a
yi_i=np.zeros([n, 1]) .
location to open

#select new lLocation to open
vi new _open = random.sample(range(@, n), 1)
yvi_new_open = np.sort(yi_new_open)

#Identify the location to close (nearest to the new location)
index_new_closed=np.argmin(distancelct open[:,vi_new open])

Identify the nearest location to the new
#0pen and close 1 locations . .
yi_open_i[index_new_closed]=yi_new_open |OcatI0n to Open - Iocat|0n to Close

yi_open_i=np.sort(yi_open_i)
vi i[yi_open_il=1

#Re-Allocate locations to the closest open location Update b|nary vector
distancelct_open=distancelct[np.where(yi_i)[0]] .

assignment_open=np.argmin(distancelct_open, axis=0) Of Iocatlons
objvalue open=distancelct _open.min(axis=0)*demandlct
objvalue=sum(objvalue open) :3]_

P-Median Example

#Compute Acceptance Rate
diff = objvalue-objvalue i

#Calculate temperature for current iteration
tp = temp / float(iteration + 1)
#tp = max(@.999%tp, 50000)

#Calculate metropolis acceptance critgrion
metropolis = np.exp(-diff / tp) ore ==
h Compute probability e 7

#print(diff)

#Check if we should keep the new solution
if diff < @ or random.random() < metropolis:

#lpdate Locations and Objective Value
yi=copy.deepcopy(yi_i)
yvi_open=copy.deepcopy(yi_open_i)
objvalue_i=copy.deepcopy(objvalue)

#Compute links

linkindex_pl=range(n)
linkindex_p2=assignment_open
yi_open_index = np.array(yi_open)
linkindex_p2 = yi_open_index[linkindex_p2]

AE

Check if the new candidate solution is
better than the best solution found so far;
If yes, update the best solution found

If not, Accept the new candidate solution
AE

with a probabilitye 7

#5tore new objective value in the objective value list
objvaluelist=np.append(ocbjvaluelist, objvalue)

now = time.time()
cputime_i=np.append(cputime_i, now-program starts)
it_t=now-program_starts

#Update last objective value
objvaluelist=np.append(objvaluelist, min{objvaluelist))
now = time.time()

cputime_i=np.append(cputime_i, now-program_starts)

32

P-Median Example

s Hill Climbing .. Simulated Annealing
23 4 231
22 1 22
214 211
20 1 an
19 - 19
18 - 18 -
17 1 171
\ "
16 4 : . i i i . . ' 16 A : : .
0 5 10 15 2 25 31 33 4 0 10 20 30 4 S0 6 70 8
80000 - 80000 { &
60000 1 60000 -
40000 1 40000 4
20000 4 20000 -
0 0
0 20000 40000 60000 80000 100000 z = e e = . e

Obj. Value = 162,325,709.91 (Gap = 0.58%) Obj. Value =161,530,034.29 (Gap = 0.08%)
Optimum= 161,393,599.84 (321 seconds) 33

P-Median Example

Hill Climbing Simulated Annealing

1e8
1e8
6001 6.00
575 75 |
550 550
525 5.25
500 5.00 -
475 1 475
450 | 450
0 100 200 300 400 500 0 100 200 300 200 500
100000 - 100000 1
80000 80000
60000 60000 1
40000 40000
20000 20000 1
0 0
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

Obj. Value =443,792,460.62 Obj. Value =441,252,999.99
Optimum= Memory Error 34

TSP Example

= Solution Representation: Premutation Encoding
= Move Operators: Swap 2 locations ; Insertion ; 3-Opt
= Replacement Procedure: First Descent ; First Descent ; Best Descent

Number of candidate locations
n=100

35

TSP Example

random.seed(3)

iteration=@
ObjValueOpt=0bjValue
Objvalue_list=0bjValue
program_starts = time.time()
cputime_i=[6,0]
OptSolution=Solution_i
#temp=286081323 #3682176 #18681323
temp=4015857

#temp=6.1

it _T=0

#itnax-20000 Initial Temperature

tp = temp
while cputime i[-1]<288:
#while iteration<itmax:

iteration=iteration+l
Solution_ i=copy.deepcopy(OptSolution)

swap_it=0

while swap_it<no_swap:
k_opt(Solution_i)
swap_it=swap_it+1

dfsoclution_i=pd.DataFrame(Solution_i

Hroaluions Setetond) Move Operator
dflinkindex_pl=dfSolution_i

dflinkindex p2=dfSolution_i.shift(-1)

dflinkindex p2.loc[n-1]=dflinkindex_pl.loc[@]
linkindex_pl=dflinkindex_pl.to_numpy()

linkindex p2=dflinkindex_p2.to_numpy()

linkindex pl=linkindex pl.astype(int) 1 :
linkindex_p2=linkindex_p2.astype(int) CO m p u te ObJ eCt I Ve Val u e fo r
linkindex_pl=linkindex_pl.transpose()[@]

linkindex p2=linkindex p2.transpose()[@] N eW SO I u t i O n

#Compute Objective Value
ObjValue=sum(distancelct[linkindex p1,linkindex_p2])

36

TSP Example

#lompute Acceptance Rate
diff = ObjValue-0ObjValueOpt

#Calculate temperature for current iteration
if it T>»20:

tp = temp / float(iteration + 1)

it T=0
#tp = tp *0.9999

#tp= temp / np.log(iteration + 1) Update Tem peratu re

#print(tp)
it T=it T+1

#Calculate metropolis acceptance criterion
metropolis = np.exp(-diff / tp)

#pdate Optimal Solution Compute Acceptance Probability

if diff < @ or random.random() < metropolis:
ObjValueOpt=copy.deepcopy(0bjValue)
OptSclution=copy.deepcopy(Solution i)

Objvalue list=z=np.append(Objvalue list, ObjValueOpt)
now = time.time()
cputime_i=np.append(cputime_i, now-program_starts)

Update Solution If Random
. number smaller than acceptance
#lUpdate Last objective value

Objvalue listznp.append(Objvalue list, min(Objvalue list)) F)I’()t)éit)ilit)/
now = time.time()
cputime_i=np.append(cputime_ i, now-program starts)

print(0ObjValueOpt)

37

TSP Solution (n=100)

500000
450000
400000
350000
o 300000

alu

> 250000

-

O 200000
150000
100000

50000

0

—Swap

—Optimization

—Insertion

—SA - Kopt
Kopt

—Random

0 50 100 150 200
CPU Time (sec)

38

TSP Solution (n=500)

500000
450000
400000

@ 350000

E

> 300000

—

e

O 250000
200000
150000
100000

— —Lower Bound
KOpt
—Swap

—— Optimization
Insertion
—SA-KOpt

p— — — — — — — — — — — — — —T—

0 2000 4000

CPU Time (sec)

6000

39

Simulated Annealing Variants

Nuno Antunes Ribeiro

Assistant Professor

= |UIh=]

SINGAPORE UNIVERSITY OF
TECHNOLOGY AND DESIGN

ang.

neering Systems
Design

40

Adaptive Cooling Schedule

= The cooling schedules presented so far are static in the sense that they
are defined completely a priori.

= |n an adaptive cooling schedule, the decreasing rate is dynamic and
depends on some information obtained during the search.
= Example:

AE
P(AE)=]at+e T if AE>0

if min(AE;) > 0thena =a +belsea =0
1 otherwise 1eM

Where « is a auxiliary value added to the metropolis probability every time the
objective value is not improved in M iterations (i.e. min(AE;) > 0 if we are dealing

ieM
with a minimization problem).

41

Simulated Annealing Variants

Simulated annealing
(Kirkpatrick et al. 1983 and Cerny, 1985)

— T

Demon algorithms Threshold accepting
(Creutz, 1983) (Dueck and Scheuer, 1990)
Great deluge Record-to-record
(Dueck, 1993) (Dueck, 1993)

42

Simulated Annealing Variants

= Threshold Accepting: TA escapes from local optima by accepting solutions that are not
worse than the current solution by more than a given threshold Q.

= Record-to-Record Travel: RRT accepts a non improving neighbor solution with an objective
value less than the RECORD minus a deviation §. RECORD represents the best objective
value of the visited solutions during the search.

= Great Deluge Algorithm The inspiration of the GDA algorithm comes from the analogy that
the direction a hill climber would take in a great deluge to keep his feet dry. As it rains
Incessantly without end, the level of the water increases. The algorithm never makes a move
beyond the water level. The initial value of the water level is equal to the initial objective value.
During the search, the value of the level is decreased monotonically. The decrement of the
reduction is a parameter of the algorithm.

= Demon Algorithms: The acceptance function is based on the energy value of the demon
(credit). The demon credit is initialized with a given value. A nonimproved solution is
accepted if the demon has more credits than the decrease of the objective value. When a
DA algorithm accepts a solution of increased objective value, the change value of the
objective is credited to the demon. In the same manner, when a DA algorithm accepts an

Improving solution, the decrease of the objective value is debited from the demon.
43

Simulated Annealing Variants

= Demon Algorithms: The acceptance function is based on the energy value of the
demon (credit). The demon credit is initialized with a given value. A nonimproved
solution is accepted if the demon has more credits than the decrease of the
objective value. When a DA algorithm accepts a solution of increased objective value,
the change value of the objective is credited to the demon. In the same manner,
when a DA algorithm accepts an improving solution, the decrease of the
objective value is debited from the demon.

= Demon Algorithm Variants

Algorithm Specificity
BDA Initial demon value (upper bound): D,

Demon value update: if D > Dy, then D = D,
ADA Demon value update: annealing schedule
RBDA and RADA Initial demon value: mean D,

Acceptance function: D = D+ Gaussian noise
Demon value update: D,, = D, — AE

44

