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Variable Neighbourhood Search

= The basic idea of Variable Neighbourhood Search VNS is to successively
explore a set of predefined neighbourhoods to provide a better
solution.

= |t explores either at random or systematically a set of neighbourhoods to
get different local optima and to escape from local optima.

= VNS exploits the fact that using various neighbourhoods in local search
may generate different local optima and that the global optima is a local
optima for a given neighbourhood.

= Different neighbourhoods generate different landscapes



Different Neighbourhoods

= Current Solution: [1,2,3,4,5,6,7,8]
« We randomly select 6 to be moved using an operator

= Swap Operator Neighbourhood = |nsertion Operator Neighbourhood

* [6,2,3,4,5,1,7,8] * [6,1,2,3,4,5,7,8]

* [1,6,3,4,5,2,7,8] * [1,6,2,3,4,5,7,8]
 [1,2,6,4,5,3,7,8] * [1,2,6,3,4,5,7,8]

* [1,2,3,6,5,4,7,8] * [1,2,3,6,4,5,7,8]

* [1,2,3,4,6,5,7,8] * [1,2,3,4,6,5,7,8]

* [1,2,3,4,5,7,6,8] * [1,2,3,4,5,7,6,8]

* [1,2,3,4,5,8,7,6] * [1,2,3,4,5,7,8,6]
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Variable Neighbourhood Search

The neighbourhood of a solution
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Search Operator Selection Procedure

= The design of the VND algorithm is mainly related to the selection of
neighbourhoods and corresponding search operators.

= Different strategies can be used:

« Exhaustive Selection — At each iteration, all the neighbourhoods are
Investigated. The best solution found is selected for evaluation (through hill
climbing, simulated annealing, others)

« Rank-based Selection - The different neighbourhoods are ranked by user
preference or complexity - e.g. size of the neighbourhood. At each iteration, the
15t ranked neighbourhood is evaluated. If a better solution is found, the algorithm
moves to the next iteration; otherwise it explore the 2" best neighbourhood. This
procedure is repeated until all neighbourhoods are explored. The best solution
found is selected for evaluation (through hill climbing, simulated annealing,
others)

* Probabilistic Selection — A probability is given to each neighbourhood. At

each iteration a neighbourhood is randomly selected. The best solution found is
selected for evaluation (through hill climbing, simulated annealing, others)



Variable Neighbourhood Search

1. Initialize: Generate random initial solution, py ¢,
2. While (termination criteria is not met)

3. Apply search operator selection procedure
/ 4,
5

Generate a new solution (or a set of new solutions) p,,.,, by applying a
the search operator selected to py.q¢

If p.,.v, IS better than py.qt, than vyesr= Prew
6. Go back to 2, until termination criteria Is met

while swap it<no_swap:
if random.random()<8.5:
k opt(Solution i)
else:
insert_random(Solution i)
swap_it=swap it+1l



TSP Example
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Multistage Local Search

Exploration
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= The basic idea of Multistage Local
Search is having successive stages
where different metaheuristic strategies
are applied. Stage 1

= For instance:
« Having different search operators

No full
exploration of the
neighbourhood —
first descent

(e.g. swap operator followed by 2-opt Exploitation
operator) o
- Having different neighbourhood neighbourhood
explorations (e.qg. first descent, Stage 2 F..p.t
followed by best descent) e®0 00 o®| o
« Having different metaheuristic \_® e%,° ¢ 0%% ® ) Coestdescen

approaches (e.g. genetic algorithm
followed by simulated annealing)
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Initial Solution

take a large number of iterations to converge.

Generating a random initial solution is quick, however the metaheuristic may

To speed up the search, a greedy constructive heuristic may be applied.

10000 1

In greedy heuristics, we start from scratch
(empty solution) and construct a solution by .
assigning values to one decision variable at
a time, until a complete solution is generated.

Many optimization problems have good greedy |
algorithms available, easy to design and
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Note however that it does not necessarily mear.
that starting with a better initial solution always
lead to better solutions.
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Constructive + Improvement Heuristics

= Constructive Heuristic — fast method used to generate an initial feasible
solution. It starts with an empty solution and repeatedly extends this
solution until a complete solution is obtained - problem specific

= Improvement Heuristic — method used to improve an existing solution
by performing local adjustments — concept of metaheuristics

Constructive Heuristic

!

Improvement Heuristic

Constructive
Heuristic
Solution

Obj. Value

x\ Improvement
Heuristic Solution

CPU Time
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Greedy Heuristic for the TSP

= How would you optimize the TSP if you did not have available a
computer?

N

Nearest neighbour heuristic: It starts at

one city and connects with the closest

unvisited city. It repeats until every city
has been visited.

13



Greedy Heuristic for the TSP

= How would you optimize the TSP if you did not have available a

computer? Shortest Edge Selection: All possible

edges are sorted by distance, shortest

to longest. Then the shortest edge that

will neither create a vertex, nor a cycle

iIs added. This is repeated until we have
a cycle containing all of the cities.

<
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Greedy - Shortest Edge Selection

= Distance Matrix

C-D
A-C-D
A-C-D-B
A-C-D-B-A X Cycle
E-A-C-D-B
E-A-C-D-B-E

A B C D E
999 999 999 999
999 999 999 999
999 999 999 999
999 999 999 999
999 999 999 999
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Greedy - Shortest Edge Selection

_ Stop when all distances are 999
while np.min(distancelct)!=99999:

nextminz=np.where(distancelct==np.min(distancelct))

2 value=0
Ef_len(nextmin [8])>1: \ .. ]
pl=nextmin[@][0] Select minimum distance

p2=nextmin[1][@]
else:
pl=nextmin[@]
p2=nextmin[1]
pcycle=np.copy(p2)
while np.where(pcycle==linkindex p1)[8].size==1:

pcycle index=np.where(pcycle==linkindex_p1)[@]
pcyclezlinkindex p2[np.where(pcycle==linkindex p1)[8]]
if pcycle== pl:

distancelct[pl,p2]=99999 Ch eCk |f CyCIe

else:
distancelct[pl, : ]=99999
distancelct[:,p2]=99999
distancelct[p2,pl]=99999
linkindex_ pl=np.append(linkindex_p1, p1) \
linkindex_ p2=np.append(linkindex_p2, p2) .
linkindex_pl=linkindex_pl.astype(int) Update d|Stan ce table and
linkindex p2=1linkindex_p2.astype(int)

solution variables

16



Greedy - Shortest Edge Selection

10000 -

8000 -

6000 -

4000 -

2000

Obj. Value = 219,336.56 (Less than 1 second)

Best Solution Found SA = 198,575.60 (After 6000 seconds)
Best Solution Found OPT = 220,704.05 (After 6000 seconds)
Best Lower Bound OPT = 163,571.47
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Greedy Integration with SA
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Other Greedy Heuristics

= P-Median - Greedy-add algorith,

* Firstly, a faclility is located in such a way as to minimize the total cost
for all customers. Facilities are then added one by one until p is
reached.

Cost

1EI
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Other Greedy Heuristics

= P-Median - Greedy-drop algorithm
« Starts with facilities located at all potential facility sites and then

eliminate (drop) the facility that has the least impact on the objective

function. Cost

1EI

20



Other Greedy Heuristics

= Knapsack Problem - profit/weight greedy algorithm
» Select always the object with the highest profit/weight value

wW; fi fi/w; Example Knapsack Problem:
Obj 1 2 5 2.5 Opiecs
Obj 2 3.75 7 1.87
Obj 3 2.5 3 1.2
Obj 4 3 5 1.67
obis | 1 | 4 | 4 o5
Obj 6 1.5 8 5.33
Obj 7 2.75 7 2.54 “
cap 4 Knapsack
Profit=12
Weight=2.5

21



Other Greedy Heuristics

= Vehicle Routing - Clarke-Wright greedy algorithm
* The procedure starts with each costumer being served by a single tour.
 Cost savings S;; = ¢;p + ¢jp — ¢;; can be obtained assuming ¢;; is the cost of travelling
from customer i to j (where j = 0 is the depot)

« The savings are sorted in decreasing order. The procedure merges costumers i and j

corresponding to the highest savings S;; , without violating the capacity restrictions




Other Greedy Heuristics

= Vehicle Routing - Clarke-Wright greedy algorithm
* The procedure starts with each costumer being served by a single tour.

 Cost savings S;; = ¢;p + ¢jp — ¢;; can be obtained assuming ¢;; is the cost of travelling
from customer i to j (where j = 0 is the depot)

« The savings are sorted in decreasing order. The procedure merges costumers i and j
corresponding to the highest savings S;; , without violating the capacity restrictions
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Other Greedy Heuristics

= Vehicle Routing - Clarke-Wright greedy algorithm
* The procedure starts with each costumer being served by a single tour.

 Cost savings S;; = ¢;p + ¢jp — ¢;; can be obtained assuming ¢;; is the cost of travelling
from customer i to j (where j = 0 is the depot)

« The savings are sorted in decreasing order. The procedure merges costumers i and j
corresponding to the highest savings S;; , without violating the capacity restrictions
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Other Greedy Heuristics

= Vehicle Routing - Clarke-Wright greedy algorithm
* The procedure starts with each costumer being served by a single tour.
 Cost savings S;; = ¢;p + ¢jp — ¢;; can be obtained assuming ¢;; is the cost of travelling
from customer i to j (where j = 0 is the depot)

« The savings are sorted in decreasing order. The procedure merges costumers i and j

corresponding to the highest savings S;; , without violating the capacity restrictions
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Other Greedy Heuristics

= Vehicle Routing - Clarke-Wright greedy algorithm
* The procedure starts with each costumer being served by a single tour.
 Cost savings S;; = ¢;p + ¢jp — ¢;; can be obtained assuming ¢;; is the cost of travelling
from customer i to j (where j = 0 is the depot)

« The savings are sorted in decreasing order. The procedure merges costumers i and j

corresponding to the highest savings S;; , without violating the capacity restrictions

Vehicles with no

26



Machine Translation

= Machine Translation - Beam Search

« Machine Translation is the task of translating a sentence x from one
language (source language) to a sentence y in another language
(the target language)

Portugués v & Inglés v

\\
SMe nada X | only|know that |
T o
N
4 0 0O = @ validada

Abrir no Google Tradutor + Feedback

27



Machine Translation

er geht ja nicht nach hause | Sentence to Translate

= Machine Translz

o
-
Y Y Y Y YYD
8':4"3
:]g ANANAL
Y Y
8358
AAAAAAAN
M
h
e
8ol
g
\/
./
%%
8] e
S.SH?
3
A

¢
nis ¢ not 3 I 4 J
will be ( IS not 3 € under house )
0goes not return home
FaeQ:::Q E 30 not % E o not %
¢ o S ¢ owg 3
e % aftor al ¢ ot after )
¢ D0 AoTo 3
¢ ot ),
¢ 7 ol 3
¢ are not 9
C 75 nol a 9
.
| yes >
Trained Neural Machine L =Y
. . >
Translation I goes | home |
LN | | EEN
/ ae 8% does not go home
Neural Network sequentially computes the A
o L] L] L] it * . .
probability of each word conditional of the source > 0
sentence
Source: “Statistical Machine Translation®, Chapter 6, Koehn, 2009,
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\ v J
Probability of next target word, given . . _
ik il s il i e Source: https:/ /www.voutube.com/watch?v-XtiJxZBaZc2



https://www.youtube.com/watch?v=XXtpJxZBa2c

= Beam Search Greedy Algorithm: On each step of decoder, keep track of
the k most probable partial translations (which we call hypotheses)

* K is the beam size (usually between 5 to 10)

= A hypotheses y,, ..., y; has a score which is its log probability

t
score(yy,- .., yt) = log PLm(y, - - -, yelzr) = Z log Pom(yilva,y -, ¥i-1,2)
-

« Scores are all negative, and higher score is better
« We search for high-scoring hypotheses

Source: https://www.youtube.com/watch?v=XtiJxZBa2c2 9



https://www.youtube.com/watch?v=XXtpJxZBa2c

Other Greedy Heuristics

= Machine Translation - Beam Search

- -4.8
-2.8 tart in
a -4.3
1.7 -3.4 -4.5 _
. e
hit 2.5 pie » with P!
-0.7 me 33 3.7 -4.6
/ He -2.9 with » a tart
-2.9
struck
-3.5 -4, _
hit 4.3 5.0
START 1.6 k one pie
\ Was _38 _53
| struck tart
09 -1.8
got
-0.7

Source: https://www.voutube.com/watch?v=XtiJxZBa2c3 0


https://www.youtube.com/watch?v=XXtpJxZBa2c

Other Greedy Heuristics

= Machine Translation - Beam Search

-2.8 tart in

a -4.3
-3.4 -4.5

-1.7 pie
. 2.5 pie with

hit
0.7 / \.l e 33 3 4.6

\ 4

He \( -2.9 with a [ — tart
-2.9
struck
-3.5 -4, i}

hit 4.3 5.0
START 1.6 k one pie
\ Was _38 _53
| struck tart

009 -1.8

got

-0.7

Source: https://www.youtube.com/watch?v=XtiJxZBa2c3 1


https://www.youtube.com/watch?v=XXtpJxZBa2c

Other Greedy Heuristics

= Knapsack Problem - Beam Search

12
Wi fi fi/w; 2 / Obj.5 ——
Obj 1 2 5 2.5 , 2.5
Obj 2 3.75 7 1.87
Obj 3 2.5 3 1.2 / 1.5 \'( Obj. 1 —'X
Obj 4 3 5 1.67 35
Obj 5 1 4 1 START 0126
Obj 6 1.5 8 5.33 \ 4
Obj 7 2.75 7 2.54 Obi. 5 2.5
cap 4 1 11
\ Obj. 7
3.75

32
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GRASP

= The GRASP metaheuristic is an iterative greedy heuristic to solve
combinatorial optimization problems.

= Each iteration of the GRASP algorithm contains two steps: construction
and local search

= |n the construction step, a feasible solution is built using a randomized
greedy algorithm, while in the next step a local search heuristic is
applied from the constructed solution.

= The greedy algorithm must be randomized to be able to generate various
solutions. Otherwise, the local search procedure can be applied only
once.

= This approach is efficient if the constructive heuristic designs different
promising regions of the search space that makes the different local
searches generating different local optima of “good” quality

34



Restricted Candidate List

= |n the constructive heuristic, at each iteration the elements that can be
Included in the partial solution are ordered in the list

= From this list, a subset is generated that represents the restricted
candidate list (RCL)

= The RCL list is the key component of the GRASP metaheuristic. It
represents the probabilistic aspect of the metaheuristic

35



GRASP

= Knapsack Problem - profit/weight randomized greedy algorithm
« RCL includes the top n objects with the highest profit/weight value

n=3 Randomly
w; fi fi/wi selected

Obj 1 2 5 2.5 RCL, = {Obj6; Obj5; Obj7} — Obj7
Obj 2 3.75 7 1.87
Obj 3 2.5 3 1.2
Obj 4 3 5 1.67
Obj 5 1 4 4
Obj 6 1.5 8 5.33
Obj 7 2.75 7 2.54
cap 8

Profit =0

Weight =0

36



GRASP

= Knapsack Problem - profit/weight randomized greedy algorithm
« RCL includes the top n objects with the highest profit/weight value

n=3 Randomly
w; fi fi/wi selected
Obj 1 2 5 2.5 RCL, = {0bj6; Obj5; 0bj7} —> Obj7
Ob’,z 375 ! 187 RCL, = {Obj6; Obj5; Obj1} — 0bj5
Obj 3 2.5 3 1.2
Obj 4 3 5 1.67
Obj 5 1 4 4
Obj 6 1.5 8 5.33
Obj 7 2.75 7 2.54
cap 8
Profit =7
Weight = 2.75

37



GRASP

= Knapsack Problem - profit/weight randomized greedy algorithm
« RCL includes the top n objects with the highest profit/weight value

n=3 Randomly
w; fi fi/wi selected
Obj 1 2 5 2.5 RCL, = {Obj6; Obj5; Obj7} — 0bj7
obj2 | 375 ! 187 RCL, = {Obj6; Obj5; Obj1} —> Obj5
Obj 3 2.5 3 1.2
Obj 4 3 5 1.67 RCL; = {0bj6; Obj1; Obj 2} — Obj 1
Obj 5 1 4 4
Obj 6 1.5 8 5.33
Obj 7 2.75 7 2.54
cap 8
Profit =11
Weight = 3.75

38



GRASP

= Knapsack Problem - profit/weight randomized greedy algorithm
« RCL includes the top n objects with the highest profit/weight value

n =3 Randomly
w; fi fi/w; selected
Obj 1 2 5 2.5 RCL, = {Obj6; Obj5; Obj7} — 0bj7
RCL, = {Obj6; Obj5; Obj1} — Obj5
RCL; = {Obj6; Obj1; Obj 2} — 0bj 1
Obj 5 1 4 4 RCL, = {0Obj 6} . Obj 6
Obj 6 1.5 8 5.33
Obj 7 2.75 7 2.54
cap 8
Profit = 16
Weight = 5.75
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GRASP

= Knapsack Problem - profit/weight randomized greedy algorithm
« RCL includes the top n objects with the highest profit/weight value

n =3 Randomly
w; fi fi/w; selected
Obj 1 2 5 2.5 RCL, = {Obj6; Obj5; Obj7} — 0bj7
RCL, = {Obj6; Obj5; Obj1} — Obj5
RCL; = {Obj6; Obj1; Obj 2} — 0bj 1
Obj 5 1 4 4 RCL, = {0Obj 6} . Obj 6
Obj 6 1.5 8 5.33
Obj 7 2.75 7 2.54
cap 8
Profit = 24
Weight = 7.25

40



Restriction Criteria

= The restriction criteria:

 Cardinality-based criteria: The RCL list is made of the n best elements
In terms of the incremental cost, where the parameter p represents the
maximum number of elements in the list.

» Value-based criteria: It consists in selecting the solutions that are better
than a given threshold value.

41



GRASP

= Randomized Nearest Neighbour Search
@

42



GRASP

= Randomized Nearest Neighbour Search

43



Constructive Heuristic Improvement Heuristic
A0Dbj.
Value
CPU Time ” Neighbourhood .
A0Dbj.
Value
CPU Time Neighbourhood .
Obj.
Value
CPU Time Neighbourhood .
Iterations,
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Project Paper

Project: The objective of the project is to enable students to design, propose and
adapt metaheuristic solutions to solve a real-world challenge. The topic can be
selected according to the students’ interest. A maximum of three students per
project team is allowed. Project deliverables include a research paper (5-15
pages):

1.

o 0heWN

Abstract — 1 paragraph

Introduction / literature review — 1 to 2 pages

Optimization problem formulation — 1 to 2 pages

Solution encoding and search operators 1 — 3 pages

Summary of the metaheuristics used, and heuristic rules applied 2 — 4 pages
Results 1 — 3 pages

46



Grading Rubrics

= Quality of the research paper

= Complexity of the search operators and solution encoding

= Number of metaheuristics implemented

= Complexity of the heuristic rules implemented within each metaheuristic
= Discussion of the results

47



Routing Problems

Many different Search Operators have been proposed for the Vehicle
Routing Problem

= Relocate: This operator consists in relocating one customer from one
route to another.

‘b\

,a-

é

Data Instances: http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

48


http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

Routing Problems

Many different Search Operators have been proposed for the Vehicle
Routing Problem

= Swap: This operator consists in swapping two customers from different
routes. It can be seen as a double relocation in which the customers are

inserted at their counterpart’s position in the route.

Data Instances: http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

49


http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

Routing Problems

Many different Search Operators have been proposed for the Vehicle

Routing Problem

= K-Opt: This operator, which is also called k-opt, consists in dropping k
edges in the same route and then reconnecting the resulting segments by
other edges.

Data Instances: http://vrp.atd-lab.inf.puc-rio.br/index.php/en/ 0



http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

Routing Problems

Many different Search Operators have been proposed for the Vehicle
Routing Problem

= Cross-Operator: This operator cuts two different routes in two parts and
recompose them with crossing edges.

Data Instances: http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

51
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Routing Problems

Many different Search Operators have been proposed for the Vehicle
Routing Problem

= Split-to-single: A pair of demand centers are selected and combined to
create a new route

Data Instances: http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

52
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Routing Problems

TSP/Vehicle Routing Extensions

 Demand centres may have time
window constraints

« Consideration of pick-up and deliveries
« Multi depot
 Bin packing (see next slide)

Data Instances: http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

53


http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

+ Bin Packing Problem

Possible metaheuristic procedure

1. Initial solution generated using greedy
algorithm

2. Each bin of the current solution is
SUCCGSSively eliminated and its items Objective minimize the number of bins required
are redistributed to other bins. If the
new solution iIs feasible, we move to
that solution. Otherwise a metaheuristic
method is used to reduce infeasibility

3. Metaheuristic: Items from a bin are
removed and moved to other bins.
Whenever a feasible solution is
obtained, return to step 2.

54



Scheduling Problems

= Job Shop Scheduling

Machine 0 Machine 1 Machine 2
1 0 2 1 0 1 2 0

« Swap/Exchange Operator

* Insertion Operator L2314 /5/617)38

« Inversion Operator =

11217165 4| 3|38

1 2 5 6 7 8 9 10 11 12

Data Instances: http://optimizizer.com/DMU.php

55


http://optimizizer.com/DMU.php

Scheduling Problems

= Sport’s Scheduling

= |nputs:
* N teams
A matrix d of distances between teams

Constraints:

« Teams play with each other team twice (home or away)

« Teams cannot play more than 3 consecutive games at home or away

« Two teams cannot play with each other in consecutive weeks (i.e. a
game a @ b cannot be followed by agame b @ a

Objective

« Minimize travel distance

Source: https://www.youtube.com/watch?v=MqgSyOP-TpCs&list=PLNMgVat8MREx6Nex1Q9003vrZem-JXNvX&index=26
Data Instances: https://mat.tepper.cmu.edu/TOURN/

56
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Sport’'s Scheduling

. s | @ | 4 @5 | @2 | @3 > | @s | Search Operators:

2 | s 1 | @ | @ | 4 | 3 6 | @ | @1 | @5 « Swap homes

3 @4 5 2 @1 6 @2 1 @6 | @5 4 ) Swap teams

4 |3 | 6|t @2 ) 1 | 5 | 2 | @] 63 * Partial swap teams
5 @2 @3 6 4 1 @6 @4 @1 3 2 . Swap roundS

6 @1 @4 @5 2 @3 5 @2 3 4 1

 Partial Swap teams

Objective function:

di2 + dp1 + dy5 + dsg + dyz + d3q +dyp + dgy

+ .. b

dg1 + d14 + dys + dsg + gz + dgg + ez + dog

Source: https://www.youtube.com/watch?v=MqgSyOP-TpCs&list=PLNMgVat8MREx6Nex1Q9003vrZem-JXNvX&index=26
Data Instances: https://mat.tepper.cmu.edu/TOURN/

57


https://mat.tepper.cmu.edu/TOURN/
https://www.youtube.com/watch?v=MqSyOP-TpCs&list=PLNMgVqt8MREx6Nex1Q9003vrZem-JXNvX&index=26

Sport’'s Scheduling

T-R 1 2 3 4 5 6 7 8 9 10
. s | @ | 4 @5 | @2 | @3 > | @s | Search Operators:
2 | s 1 | @ | @ | 4 | 3 6 | @ | @1 | @5 « Swap homes
3 @4 5 2 @1 6 @2 1 @6 | @5 4 ) Swap teams
4 |3 | 6|t @2 ) 1 | 5 | 2 | @] 63 * Partial swap teams
5 @2 @3 6 4 1 @6 @4 @1 3 2 . Swap roundS
6 @1 @4 @5 @3 5 @2 3 4 1 .
 Partial Swap teams
T-R 1 2 4 5 6 7 8 9 10
1 | 6 | @ | 4 @ | @ | @ | 5 | 2 | @6
2 5 1 @3 @6 @4 3 6 4 @1 @5
3 @4 5 2 @1 6 @2 1 @6 @5 4
4 3 6 @1 @5 2 1 5 @2 @6 @3
5 @2 @3 6 4 1 @6 @4 @1 3 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

Source: https://www.youtube.com/watch?v=MqgSyOP-TpCs&list=PLNMgVat8MREx6Nex1Q9003vrZem-JXNvX&index=26
Data Instances: https://mat.tepper.cmu.edu/TOURN/
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Sport’'s Scheduling

T-R 1 2 3 4 5 6 7 8 9 10
. s | @ | 4 @5 | @2 | @3 > | @s | Search Operators:
2 | s 1 | @ | e | 4 | 3 | 6 | @ | @1 | @5 « Swap homes
3 @4 5 2 @1 6 @2 1 @6 | @5 4 ) Swap teams
4 |3 | 6|l @2 1 | 5 | 2 | @] @3 * Partial swap teams
5 @2 @3 6 4 1 @6 @4 @1 3 2 . Swap I'OUﬂdS
6 @1 @4 @5 @3 5 @2 3 4 1 .
 Partial Swap teams
T-R 1 2 3 4 5 6 7 8 9 10
1 6 @2 4 @5 @4 @3 5 2 @6
2 5 @3 6 4 1 @6 @4 @1 3 @5
3 @4 5 2 @1 6 @2 1 @6 @5 4
4 3 6 @1 @5 @2 1 5 2 @6 @3
5 @2 1 @3 @6 4 3 6 @4 @1 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

Source: https://www.youtube.com/watch?v=MqgSyOP-TpCs&list=PLNMgVat8MREx6Nex1Q9003vrZem-JXNvX&index=26
Data Instances: https://mat.tepper.cmu.edu/TOURN/
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Sport’'s Scheduling

T-R 1 2 3 4 5 6 7 8 9 10
. s | @ | 4 @5 | @2 | @3 > | @s | Search Operators:
2 | s 1 | @ | e | 4 | 3 | 6 | @ | @1 | @5 « Swap homes
3 | @ | 5 2 | @ | 6 | @ | 1 | @ | @5 | 4 * Swap teams
4 |3 | 6|l @2 1 | 5 | 2 | @] @3 * Partial swap teams
5 @2 @3 6 4 1 @6 @4 @1 3 2

e Swap rounds
6 @1 @4 @5 2 @3 5 @2 3 4 1 .

 Partial Swap teams
T-R 1 2 3 4 5 6 7 8 9 10
1 6 @2 4 @5 @4 @3 5 2 @6
2 5 @3 6 4 1 @6 @4 @1 3 @5
3 @4 5 2 @1 6 @2 1 @6 @5 4

Repair Procedure

4 3 6 @1 @5 @2 1 5 2 @6 @3
5 @2 1 @3 @6 4 3 6 @4 @1 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

Source: https://www.youtube.com/watch?v=MqgSyOP-TpCs&list=PLNMgVat8MREx6Nex1Q9003vrZem-JXNvX&index=26
Data Instances: https://mat.tepper.cmu.edu/TOURN/
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Sport’'s Scheduling

TR | 1| 2| 3| a |5 |6 | 7 | 8 | 9 |10
. s | @ | 4 @5 | @2 | @3 > | @s | Search Operators:
2 | s 1 | @ | e | 4 | 3 | 6 | @ | @1 | @5 « Swap homes
3 @4 5 2 @1 6 @2 1 @6 | @5 4 ) Swap teams
4 |3 | 6|l @2 1 | 5 | 2 | @] @3 * Partial swap teams
5 | @ | @ | 6 | 4 1 | @ | @ | @1 | 3 2

e Swap rounds
6 | @ | @ | @ | 2 |@ | 5 | @ | 3 | a4 1 _

 Partial Swap teams
TR | 1| 2| 3| a |5 |6 | 7| 8 | 9 |10
1 6 | @ | 4 @ | @ | @3 |4 5 2 | @6
2 | s ( @ | 6 | 4 [ 1 |es| @ [e@| 3 | @
3 | @t 5 42 |@| 6 p@ | 1 | @ [S@5 | 4

'} Repair Procedure

4 | 3 | 6 @ p@ Pe2 1 ps5s [*2 | @6 | @3
5 | @ | 1\ @ es| 4|\ 3 6 |@]|e|:
6 | @ | @ P@ P2 | @ A5 N@2 | 3 | 4 | 1

Source: https://www.youtube.com/watch?v=MqgSyOP-TpCs&list=PLNMgVat8MREx6Nex1Q9003vrZem-JXNvX&index=26
Data Instances: https://mat.tepper.cmu.edu/TOURN/
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Sport’'s Scheduling

TR | 1 2 3 4 5 6 7 8 9 | 10
1 6 | @ | 4 @ | @ | @3 2 | @6
2 5 1 | @3 | @6 | 4 3 6 | @ | @1 | @5
3 | @ | s > @1 | 6 |@ | 1 | @ | @5 | 4
4 3 6 | @ | @5 | @ | 1 5 2> | @6 | @3
5 | @ | @3 | 6 4 1 | @ | @ | @1 | 3 2
6 |@ |@ | @ | 2 | @ | 5 | @ | 3 4 1
TR | 1 2 3 4 5 6 7 8 9 | 10
1 6 5 4 @ | @ | @3 |42 m@s | @6
2 5 ( @3 | 6 4 1 | @ | @ [ @ | 3 | @5
3 | @ 2@ 4@ | @1 | 6 5 1 | @6 [2 4
4 | 3 | 6fep2 N5 [ 1 pe@ [*5 | @6 | @3
5 | @ | 1\ @ @ | 4 3 6 | @ | @ | 2
6 | @ | @ N 2 P@5 | @3 D@2 N 5 3 4 1

Search Operators:

« Swap homes
Swap teams
Partial swap teams
Swap rounds
Partial Swap teams

Repair Procedure

Source: https://www.youtube.com/watch?v=MqgSyOP-TpCs&list=PLNMgVat8MREx6Nex1Q9003vrZem-JXNvX&index=26
Data Instances: https://mat.tepper.cmu.edu/TOURN/
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Sport’'s Scheduling

T-R 1 2 3 4 5 6 7 8 9 10
1 6 | @ | a @5 | @ | @3 > | @s | Search Operators:
2 | s 1 | @ | @ | 4 | 3 | 6 | @ | @ | @5 « Swap homes
3 | @ | 5 2 |@e | 6 |@ | 1 | @ | @5 | 4 * Swap teams
t | 3|6 jertje e | 1| > | 2 |@ ] 6 e Partial swap teams
5 @2 @3 6 4 1 @6 @4 @1 3 2
e Swap rounds
6 @1 @4 @5 @3 5 @2 3 4 1 .
 Partial Swap teams
T-R 1 2 4 5 6 7 8 9 10
1 6 @2 4 @5 @4 @3 5 2 @6
2 5 1 g @3 7,@6 4 3 6 @4 @6 @5
3 |e@es | sl 2(e| 6 |[@| 1 | @ | @ | 4
\
4 3 6 PEl Y5 | @ | 1 5 2 | @1 | @3
5 @2 @3 6 4 1 @6 @4 @1 3 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

Source: https://www.youtube.com/watch?v=MqgSyOP-TpCs&list=PLNMgVat8MREx6Nex1Q9003vrZem-JXNvX&index=26
Data Instances: https://mat.tepper.cmu.edu/TOURN/
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Sport’'s Scheduling

T-R 1 2 3 4 5 6 7 8 9 10
1 | 6 | @2 | 4 @5 | @2 | @3 > | @s | Search Operators:
2 | s 1 | @ | @ | 4 | 3 6 | @ | @1 | @5 « Swap homes
3 | @ | 5 2 |@ | 6 | @ | 1 | @6 | @5 | 4 * Swap teams
4 | 3 |6 et e e | 1] > | 2 |e6) e * Partial swap teams
5 @2 @3 6 4 1 @6 @4 @1 3 2 . Swap roundS
6 @1 @4 @5 @3 5 @2 3 4 1 .
 Partial Swap teams
T-R 1 2 4 5 6 7 8 9 10
1 6 @2 4 @5 @4 @3 5 2 @6
2 5 1 @1 @5 4 3 6 @4 @6 n @5
3 |@ | 5 | 2 |e| 6 |@ | 1 | @6| @l 4
4 | 3 | 6 |@ | @ | @ | 1| 5 | 2 | @ Pes3
5 @2 @3 6 4 1 @6 @4 @1 3 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

Source: https://www.youtube.com/watch?v=MqgSyOP-TpCs&list=PLNMgVat8MREx6Nex1Q9003vrZem-JXNvX&index=26
Data Instances: https://mat.tepper.cmu.edu/TOURN/
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Sport’'s Scheduling

T-R 1 2 3 4 5 6 7 8 9 10
. s | @ | 4 @5 | @2 | @3 > | @s | Search Operators:
2 | s 1 | @ | @ | 4 | 3 6 | @ | @1 | @5 « Swap homes
3 @4 5 2 @1 6 @2 1 @6 | @5 4 ) Swap teams
4 |3 | 6|l @2 1 | 5 | 2 |@] @3 * Partial swap teams
5 @2 @3 6 4 1 @6 @4 @1 3 2 . Swap roundS
6 @1 @4 @5 @3 5 @2 3 4 1 .
 Partial Swap teams
T-R 1 2 4 5 6 7 8 9 10
1 6 @2 4 @5 @4 @3 5 2 @6
2 5 1 @1 @5 4 3 6 @4 @6 @3
3 @4 5 2 @1 6 @2 1 @6 @5 4
4 3 6 @3 @6 @2 1 5 2 @1 @4
5 @2 @3 6 4 1 @6 @4 @1 3 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

Source: https://www.youtube.com/watch?v=MqgSyOP-TpCs&list=PLNMgVat8MREx6Nex1Q9003vrZem-JXNvX&index=26
Data Instances: https://mat.tepper.cmu.edu/TOURN/
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Assembly Line

= Example: Car Sequencing Problem
« Cars require different options: leather seats, moonroof etc.

« Capacity constraints on the production units (e.g. at most 2 out of 5
successive cars can regquire a moon roof

* Objective: sequence all the cars such that the capacity constraints are
satisfied

18 cars

5 options




Options | 1 2 3 4 5 | Demand
A a 0 a Car

1 Yes Yes | Yes 1

2 Yes 1

3 Yes Yes 2

4 Yes Yes 2

5 Yes Yes 2

6 Yes | Yes 2
Capacity | 1/2 | 2/3 | 1/3 | 2/5| 1/5

Source: https://www.youtube.com/watch?v=yxiTNugwjZM&list=PLNMgVqt8MREx6Nex1Q9003vrZem-JXNvX&index=11
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Demand

1

Options | 1 2 3 4 5 | Demand
Car

1 Yes Yes | Yes 1

2 Yes 1

3 Yes Yes 2

4 Yes Yes 2

5 Yes Yes 2

6 Yes | Yes 2
Capacity | 1/2 | 2/3 | 1/3 | 2/5| 1/5

1
2
2
2
2

10 | Demand

N ININ] -

Source: https://www.youtube.com/watch?v=yxiTNugwjZM&list=PLNMgVqt8MREx6Nex1Q9003vrZem-JXNvX&index=11
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Demand

1

1
2
2
2
2

10 | Capacity

1/2

2/3

1/3

2/5

1/5

Options | 1 2 3 4 5 | Demand
Car
1 Yes Yes | Yes 1
2 Yes 1
3 Yes Yes 2
4 Yes Yes 2
5 Yes Yes 2
6 Yes | Yes 2
Capacity | 1/2 | 2/3 | 1/3 | 2/5| 1/5
Constraint
Violations
3
2
2
2
3

Source: https://www.youtube.com/watch?v=yxiTNugwjZM&list=PLNMgVqt8MREx6Nex1Q9003vrZem-JXNvX&index=11
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a
Slots | 1 | 2 10 | Demand
| 1 1
2 1
3 2
4 2
5 2
6 2
| 10 | Capacity
1/2
2/3
1/3
2/5
1/5

Options | 1 2 3 4 5 | Demand
Car
1 Yes Yes | Yes 1
2 Yes 1
3 Yes Yes 2
4 Yes Yes 2
5 Yes Yes 2
6 Yes | Yes 2
Capacity | 1/2 | 2/3 | 1/3 | 2/5| 1/5
Constraint
Violations
3
2
2
2
3

Source: https://www.youtube.com/watch?v=yxiTNugwjZM&list=PLNMgVqt8MREx6Nex1Q9003vrZem-JXNvX&index=11
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Slots

1

2

10

Demand

1

bk |IWIN

1
2
2
2
2

10 | Capacity

1/2

2/3

1/3

2/5

1/5

Options | 1 2 3 4 5 | Demand
Car
1 Yes Yes | Yes 1
2 Yes 1
3 Yes Yes 2
4 Yes Yes 2
5 Yes Yes 2
6 Yes | Yes 2
Capacity | 1/2 | 2/3 | 1/3 | 2/5| 1/5
Constraint
Violations
1
1
0
2
0

Source: https://www.youtube.com/watch?v=yxiTNugwjZM&list=PLNMgVqt8MREx6Nex1Q9003vrZem-JXNvX&index=11

71


https://www.youtube.com/watch?v=yxiTNuqwjZM&list=PLNMgVqt8MREx6Nex1Q9003vrZem-JXNvX&index=11

Airline Crew Scheduling

= The aim of crew pairing is to find a minimum cost set of pairings that cover all
flights for a scheduling period (usually one month).
= Each pairing must satisfy all relevant regulations, for instance:
A pairing must begin and end at the same city
A pairing shall not comprise more than 48 hours
* The number of flights in a pairing shall not be >4 times

Flight Schedule Flight Network Possible Pairings
1. City A -> City B 08:00 — 09:00 ¥ @ *o P1=-{Q0 @ O!
2. City B-> City C 10:00 — 11:00 d 0-0->0-0

3. City C -> City D 13:00 — 14:00 © :are O’)‘ ©

4. Cfty C-> Ci.t\/ A 07:00 - 08:00 P2 = {9 0 o }

5. City D -> City A 07:00 — 08:00 0

6. City A -> City B 10:00 — 11:00 k @ _e 0-’@-'0-’9-’0
7. City B-> City C 11:00 - 12:00

/2



Aircraft Stand Allocation

Aircraft | Arr. Dep. Stand

1 0800 | 1000
) 0810 | 0945
3 0813 | 0910
S1 . S2 . s3 | sa | sa S5 s6
i L L - | a 4 0815 1415 ?
IR e . i Remote
5 0818 | 1120

= Optimize allocation of stands to aircraft, aiming at
minimizing taxi times and aircraft allocated to remote
stands

1000 2347 0815
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Feature Selection iIn Machine Learning

= Apply metaheuristics for optimal selection
of features in machine learning models

= Example: Machine learning model to

predict flight delays at Changi Airport
« Explanatory Variables

Number of flights

Lagged number of flights

Time of the day

% Arrivals and Departures

Wind conditions

Cluster-based lightning variables

etc.

group_False 5 0
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Machine Translation

= Applying a GRASP procedure instead of a pure greedy beam search
approach

= Applying other metaheuristic procedures

4.0 -4.8
-2.8 tart in
a -4.3
17 /‘ -3.4 -4.5 _
hit 25 pie with pie
-0.7 \.l -4.6
/ me \ -3.3 -3.7
He \ -2.9 with a /v tart
-2.9
struck
/ hit 35 4.3 -5.0
START -1.6 on one pie
\ was -3.8 -5.3
| struck tart
09 -1.8
got

-0.7




