
Tabu Search

1

Nuno Antunes Ribeiro

Assistant Professor

▪ Tabu search behaves like a hill climbing algorithm, but it accepts non-
improving solutions to escape from local optima when all neighbours
are non-improving solutions.

▪ Usually, the whole neighbourhood is explored (best descent), whereas in
Simulated Annealing a random neighbour is selected (first descent).

▪ As in local search, when a better neighbour is found, it replaces the
current solution. When a local optima is reached, the search carries on by
selecting a candidate worse than the current solution.

▪ The best solution in the neighbourhood is selected as the new current
solution even if it is not improving the current solution.

Tabu Search

2

▪ Problem: This approach can easily lead to cycles (if the current solution is a
local optimum, the search will go to a worse solution and then immediately
back to the previous one, the local optimum).

▪ Solution: Introduce a tabu list which forbids certain solutions to be visited, to
avoid re-visiting already seen solutions.

Tabu-Search

3

Fitness Landscape

▪ Problem: This approach can easily lead to cycles (if the current solution is a
local optimum, the search will go to a worse solution and then immediately
back to the previous one, the local optimum).

▪ Solution: Introduce a tabu list which forbids certain solutions to be visited, to
avoid re-visiting already seen solutions.

Tabu-Search

4

Fitness Landscape

▪ The role of the short-term memory is to store the recent history of the search to prevent
cycling.

▪ Explicitly Memory: the approach of storing complete solutions generally consumes a
massive amount of space. Moreover, checking the presence of all neighbour solutions in the
tabu list will be prohibitive – useful method if evaluating a given solution is time consuming
(e.g. running a detailed simulation)

▪ Recency-based Attributive Memory: Usually we do not store complete solutions, but only
attributes of solutions. These features often depend on the search moves (tabu moves).

▪ For instance:

• If we apply an insertion move to a given city in the Traveling Salesman Problem, we may
simply forbid the inserted city from being inserted again.

• If we apply a single-bit-flip move in the p-median problem, we simply may forbit the same
variable from being flipped again.

• More generally: If we reach a new solution 𝑝𝑛𝑒𝑤 via search move, we may forbit any
move touching the same decision variables.

Short Term Memory

5

6

Example – Knapsack Problem

▪ Initial Solution

Objects Profit Weight Ratio Value Profit Weight

1 10 7 1.43 1 10 7

2 14 12 1.17 0 0 0

3 9 8 1.13 0 0 0

4 8 9 0.89 1 8 9

5 7 8 0.88 1 7 8

6 5 6 0.83 1 5 6

7 9 11 0.82 0 0 0

8 3 5 0.60 1 3 5

total 33 35

Maximum Capacity = 40

Example – Knapsack Problem

7

▪ Best Descent

No. Move Neighbor Profit Weight Feasible?

1 X1=0 (4,5,6,8) 23 28 Yes

2 X2=1 (1,2,4,5,6,8) 47 47 No

3 X3=1 (1,3,4,5,6,8) 42 43 No

4 X4=0 (1,5,6,8) 25 26 Yes

5 X5=0 (1,4,6,8) 26 27 Yes

6 X6=0 (1,4,5,8) 28 29 Yes

7 X7=1 (1,4,5,6,7,8) 42 46 No

8 X8=0 (1,4,5,6) 30 30 Yes

Example – Knapsack Problem

8

▪ Iterations – Tabu Size = 2
Iteration Current Solution Profit Weight Tabu Active Move?

1 (1,4,5,6,8) 33 35 8

2 (1,4,5,6) 30 30 8 3

3 (1,3,4,5,6) 39 38 3 8 6

4 (1,3,4,5) 34 32 6 3 8

5 (1,3,4,5,8) 37 37 8 6 5

6 (1,3,4,8) 30 29 5 8 6

7 (1,3,4,6,8) 35 35 6 5 8

8 (1,3,4,6) 32 30 8 6 5

9 (1,3,4,5,6) 39 38 3 8 6

10 (1,3,4,5) 34 32 6 3 8

11 (1,3,4,5,8) 37 37 8 6 5

12 (1,3,4,8) 30 29 5 8 6

13 (1,3,4,6,8) 35 35 6 5 8

14 (1,3,4,6) 32 30 8 6 5

15 (1,3,4,5,6) 39 38 5 8 6

Example – Knapsack Problem

9

▪ Iterations – Tabu Size = 2
Iteration Current Solution Profit Weight Tabu Active Move?

1 (1,4,5,6,8) 33 35 8

2 (1,4,5,6) 30 30 8 3

3 (1,3,4,5,6) 39 38 3 8 6

4 (1,3,4,5) 34 32 6 3 8

5 (1,3,4,5,8) 37 37 8 6 5

6 (1,3,4,8) 30 29 5 8 6

7 (1,3,4,6,8) 35 35 6 5 8

8 (1,3,4,6) 32 30 8 6 5

9 (1,3,4,5,6) 39 38 3 8 6

10 (1,3,4,5) 34 32 6 3 8

11 (1,3,4,5,8) 37 37 8 6 5

12 (1,3,4,8) 30 29 5 8 6

13 (1,3,4,6,8) 35 35 6 5 8

14 (1,3,4,6) 32 30 8 6 5

15 (1,3,4,5,6) 39 38 5 8 6

Cycle

Example – Knapsack Problem

10

▪ Iterations – Tabu Size = 3
Iteration Current Solution Profit Weight Tabu Active Move?

1 (1,4,5,6,8) 33 35 8

2 (1,4,5,6) 30 30 8 3

3 (1,3,4,5,6) 39 38 3 8 6

4 (1,3,4,5) 34 32 6 3 8 5

5 (1,3,4) 27 24 5 6 3 2

6 (1,2,3,4) 41 36 2 5 6 4

7 (1,2,3) 33 27 4 2 5 6

8 (1,2,3,6) 38 33 6 4 2 8

9 (1,2,3,6,8) 41 38 8 6 4 3

10 (1,2,6,8) 32 30 3 8 6 5

11 (1,2,5,6,8) 39 38 5 3 8 6

12 (1,2,5,8) 34 32 6 5 3 8

13 (1,2,5) 31 27 8 6 5 3

14 (1,2,3,5) 40 35 3 8 6 5

15 (1,2,3) 33 27 5 3 8 4

11

Example – Knapsack Problem

▪ Tabu Size (or tenure): Size of the tabu list – that is how many iterations
a move is tabu.

▪ Critical parameter - The smaller is the size of the tabu list, the more
likely is the probability of cycling. Larger sizes of the tabu list will provide
many restrictions and encourage the diversification.

• Static: In general, a constant value is associated with the tabu size. It
may depend on the size of the problem instance and particularly the
size of the neighborhood

• Dynamic: The size of the tabu list may change during the search
without using any information on the search memory (multistage).

• Adaptive: In the adaptive scheme, the size of the tabu list is updated
according to the search memory.

Tabu Size

12

1. Initialize: Generate initial solution, 𝑝𝑏𝑒𝑠𝑡
2. While (termination criteria (2) is not met)

3. Apply non-tabu move to generate a set of new solutions within
the same neighbourhood, 𝒑𝒊

4. Select the best solution found, 𝑝𝑛𝑒𝑤 = 𝑏𝑒𝑠𝑡(𝑝𝑖)

5. Update 𝑝𝑏𝑒𝑠𝑡= 𝑝𝑛𝑒𝑤
6. Update tabu list

7. Go back to (3), until termination criteria (2) is not met

13

Tabu Search Algorithm

▪ Aspiration Criteria: used to override the tabu status of a move. For
example, we can still accept a tabu move if it leads to a solution that is
better than the best found so far

▪ Solution Abstraction: usually complete solutions are not stored in the
tabu list. Instead, the search moves are included. This represents and
abstract approximation of the solutions explored. However, this approach
may prevent the tabu search from moving into solutions that were not yet
explored.

▪ Strengthening the abstraction: store more details of the search move
(e.g. move to the exact position in the solution encoding).

Aspiration Criteria and Solution Abstraction

14

Tabu Search in Python

15

Nuno Antunes Ribeiro

Assistant Professor

▪ Solution Representation: Premutation Encoding

▪ Move Operator: Insert Operator

▪ Replacement Procedure: Best Descent

TSP Example

16

Number of candidate locations
n=100

1 2 3 4 5 6 7 8 9 … n

no. locations

TSP – Generate Instance

17

Random Generation of Locations

Array i,j of distances between locations

Inputs

18

TSP – Initial Solution

Discrete vector of size n is generated by
creating a random sample of size n

Some pre-processing

Plot

Tabu Search Algorithm

19

Initially, the tabu list is empty

Size of the tabu list (i.e. number of iterations a move is in the tabu list)

Select all variables that are not in the tabu list

Randomly select one of those variables to apply insert operator

Ignore for now (See slide 26)

Apply best descent

…

Tabu Search Algorithm

20

For loop across all insert positions (best descent)

Insert Operator

Compute Objective Value

Just some processing

Update best solution found during the best descent
process

Tabu Search Algorithm

21

Update current solution and CPU time

Update tabu list

TSP Example (n=100)

22

TSP Example (n=500)

23

▪ Analyzing the effects of the
Tabu Size in the results

24

TSP Example (n=100)

Zoom

Tabu Size

Tabu list is very effective during first iterations
In the long run, solutions will converge to a local optima

Tabu Size

25

TSP Example (n=500)

▪ Analyzing the effects of the
Tabu Size in the results

Tabu list is very effective during first iterations
In the long run, solutions will converge to a local optima

Tabu Size

Reducing the size of the neighbourhood

26

0

1

2

3

4

5

6

78

9

▪ Exploring the entire neighbourhood of an insert move operator in the
TSP can be time consuming

▪ We may want to reduce the size of the neighbourhood and focus on the
most promising insertion moves.

▪ Example: Select only insertion moves that do not create paths with length
larger than a certain amount.

N=10
▪ New Insertion Operator

▪ Randomly select a city (i1) that is not in the tabu list
▪ Select the top 50% cities (list2) that are at a

minimum distance from the city i1
▪ Insert city i1 near the cities included in list2

Reducing the size of the neighbourhood

27

0

1

2

3

4

5

6

78

9

N=10

Subset of cities not included

in the tabu list

Select a city from the list of cities not

included in the tabu list

Compute the distance

matrix from the city

selected to all the other

cities

Identify the top 50% cities that

are located at a minimum

distance from the city c

At each iteration, the algorithm

explores all possible insertions that

are located nearby the city selected

Reducing the size of the neighbourhood

28

0

1

2

3

4

5

6

78

9

N=10

City selected 𝑖1 = 3

Distance 𝑑𝑖𝑠𝑡 = 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9

8423 7324 9146 9999 5042 7452 4567 10836 9136 2284

Quartile 50% = 7452

List of top 50% cities = [1,4,6,9]

Neighbourhood Solutions:

[0,3,1,8,2,7,6,4,9,5]

[0,1,8,2,3,7,6,4,9,5]

[0,1,8,2,7,6,3,4,9,5]

[0,1,8,2,7,6,4,9,5,3]

Current Solution: [0,1,8,2,7,6,4,3,9,5]

Ob. Value

60966

71546

60349

65934

54490

0

1

2

3

4

5

6

78

9

▪ Size of the neighborood

29

TSP Example (n=500)

Tabu size_% of the neighbourhood

Multistage Tabu Search

30

We could also propose an adaptive
multistage procedure.
The size of the neighbourhood
would be updated after n iterations
without improvements

Exploration and Exploitation

31

Nuno Antunes Ribeiro

Assistant Professor

▪ Medium-term memory has been introduced in tabu search to encourage
exploitation of the search.

▪ The role of medium-term memory is to exploit the information of the best-
found solutions (elite solutions) to guide the search in promising regions
of the search space.

▪ This information is stored in a medium-term memory. The idea consists in
extracting the (common) features of the elite solutions and then
intensifying the search around solutions sharing those features.

▪ Path-relinking is a common strategy used for exploitation.

▪ Path-relinking can also be integrated in other metaheuristics, such as the
simulated annealing and/or GRASP metaheuristics

Medium Term Memory

32

▪ From the set of elite solutions (best
solutions found so far), two solutions
are randomly selected – one is
designated as initial solution and
the other as guiding solution

▪ A path is generated by selecting
moves that introduce in the initial
solution attributes of the guiding
solution

▪ At each step, all moves that
incorporate attributes of the guiding
solution are evaluated and the best
move selected (intermediate
solution).

Path Relinking

33

Path Relinking

34

4 2 3 5 1

Initial Solution

2 4 3 5 1

4 1 3 5 2

3 2 4 5 1

4 2 5 3 1

4 2 3 1 5

Obj Val = 10

Obj Val = 10

Obj Val = 12

Obj Val = 14

Obj Val = 9

Obj Val = 11

2 4 5 3 1

4 1 5 3 2

3 2 5 4 1

4 2 5 1 3

Obj Val = 11

Obj Val = 10

Obj Val = 12

Obj Val = 11

1 4 5 3 2

4 3 5 1 2

3 1 5 4 2

Obj Val = 10

Obj Val = 9

Obj Val = 8

3 1 5 4 2

Obj Val = 11

Guiding Solution

▪ Long-term memory has been introduced in tabu search to encourage the
exploration of the search.

▪ The role of the long-term memory is to force the search in non-explored
regions of the search space.

▪ The main representation used for the long-term memory is the frequency
memory.

▪ Two popular diversification strategies may be applied:

• Continuous diversification: This strategy introduces during a search a
bias to encourage diversification

• Restart diversification: This strategy consists in introducing in the
current or best solution the least visited components. Then a new
search is restarted from this new solution.

Long Term Memory

35

▪ This strategy introduces during a search a bias to encourage
diversification

• 𝑣 is the actual move value

• 𝑣′ is the penalized move value

• 𝑤 is a penalty factor

• 𝑞 is the frequency ratio

Continuous Diversification

36

𝑣′ = ቊ
𝑣 𝑖𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑠

𝑣 1 ± 𝑤𝑞 𝑖𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑖𝑚𝑝𝑟𝑜𝑣𝑒

1 0 0 1 0

Bit Move
Frequency

Ratio

1 0.1

2 0.3

3 0.05

4 0.35

5 0.2

Current Solution

Best Descent

0 0 0 1 0

1 1 0 1 0

1 0 1 1 0

1 0 0 0 0

1 0 0 1 1

Move
Value

10

8

10

7

8

Penalized
Move Value

Obj. Value
6

10 (1+0.1)=11

8 (1+0.3)=10.4

10 (1+0.05)=10.5

7 (1+0.35)=9.45

8 (1+0.2)=9.2

Restart Diversification

37

▪ This strategy consists in introducing in the current or best solution the least
visited components. Then a new search is restarted from this new solution.

▪ A perturbation is applied to the current solution considering the frequency
memory of the search procedure so far.

▪ The frequency memory storesfor each component of the solution encoding
the number of times the component is present in all visited solutions

▪ Example:

• How often a variable had assumed a value 1 in a binary problem

• How often a variable has assumed a certain value in a discrete problem

• How often an edge have been selected in a permutation problem

• Etc.

Multistart vs Iterated Local Search

38

▪ In multistart local search, the initial solution is always chosen randomly
and then is unrelated to the generated local optima.

▪ Iterated Local Search improves the classical multistart local search by
perturbing the local optima and reconsidering them as initial solutions –
Similar to restart diversification

Multistart Iterated

