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▪ Exhaustive search methods are 
ineffective when solving very large 
optimization problems

▪ Exact methods of Optimization 
solve complex problems without the 
need to exhaustively search for all 
possible solutions of a problem. These 
methos ensure that the solution 
obtained is the optimal one. 

▪ In many instance, the solution space 
for solutions is so large that exact 
methods of optimization cannot even 
find feasible solutions for a problem. 
That is when we should use 
approximate methods 3

Optimization Methods



Approximate Methods
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▪ Single solution approaches (or 
neighbourhood search) focus on 
modifying and improving a single 
candidate solution; single solution 
metaheuristics include simulated 
annealing, tabu search, iterated local 
search, variable neighbourhood search, 
and guided local search. 

▪ Population-based approaches maintain 
and improve multiple candidate solutions, 
often using population characteristics to 
guide the search; population based 
metaheuristics include evolutionary 
computation, genetic algorithms, and 
particle swarm optimization.

Approximate Solution Methods

5



▪ Local Search (or Hill Climbing): oldest and simplest metaheuristic method. At each 
iteration, the heuristic replaces the current solution by a neighbour that improves the 
objective function. The search stops when all candidate neighbours are worse than the 
current solution, meaning a local optimum is reached.

▪ Simulated  Annealing: Similar to local search, but worse solutions might be accepted. It 
uses a control parameter, called temperature, to determine the probability of accepting 
nonimproving solutions. The temperature is gradually decreased until the algorithm behaves 
as pure local search.

▪ Tabu Search: Similar to random walks, as it always accepts nonimproving solutions. In
contrast to random walks, TS explores the whole neighborhood of a solution (best descent). 
To avoid cycles, TS discards the neighbours that have been recently visited by memorizing 
them in a tabu list.

▪ GRASP: Iterative greedy heuristic. At each iteration a feasible solution is generated using a 
randomized greedy algorithm. Afterwards a neighbourhood search algorithm is applied to 
improve the solution generated.

Single Solution Methods
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▪ Multistart Local Search

▪ Iterated Local Search

▪ Multistage Local Search

▪ Variable Neighbourhood Search

▪ Guided Local Search

▪ Very-Large Neighbourhood Search

Variants - Single Solution Methods
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Variants - Single Solution Methods
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• Multistart local search, the initial solution is always chosen randomly and then is 
unrelated to the generated local optima. 

• Iterated Local Search improves the classical multistart local search by perturbing the 
local optima and reconsidering them as initial solutions

Multistart Iterated

▪ Multistart vs Iterated Local Search



Variants - Single Solution Methods
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▪ Iterated Local Search - Example

▪ Restart diversification in Tabu Search - this strategy consists in introducing in the current or 
best solution the least visited components. Then a new search is restarted from this new 
solution.

▪ A perturbation is applied to the current solution considering the frequency memory of the 
search procedure so far.

▪ The frequency memory stores for each component of the solution encoding the number of 
times the component is present in all visited solutions

▪ Example:

• How often a variable had assumed a value 1 in a binary problem

• How often a variable has assumed a certain value in a discrete problem

• How often an edge have been selected in a permutation problem

• Etc.



▪ The basic idea of Multistage Local Search is 
having successive stages where different 
metaheuristic strategies are applied. 

▪ For instance:

• Having different search operators (e.g. swap 
operator followed by 2-opt operator)

• Having different neighbourhood 
explorations (e.g. first descent, followed by 
best descent)

• Having different metaheuristic approaches 
(e.g. genetic algorithm followed by simulated 
annealing)
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Exploration

Exploitation

Small 
neighbourhood 
sizes

Full exploration 
of the 
neighbourhood 
– best descent

Large 
neighbourhood 
sizes

No full 
exploration of the 
neighbourhood –
first descent

Stage 1

Stage 2

Variants - Single Solution Methods

▪ Multistage Local Search



▪ Variable Neighbourhood Search
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Variants - Single Solution Methods

▪ The basic idea of Variable Neighbourhood 
Search VNS is to successively explore a set of 
predefined neighbourhoods to provide a better 
solution. 

▪ It explores either at random or systematically a 
set of neighbourhoods to get different local 
optima and to escape from local optima. 

▪ VNS exploits the fact that using various 
neighbourhoods in local search may generate 
different local optima and that the global optima 
is a local optima for a given neighbourhood. 

▪ Different neighbourhoods generate different 
landscapes

The neighbourhood of a solution 

is different depending on the 

move operator used



Different Neighbourhoods
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▪ Current Solution: [1,2,3,4,5,6,7,8]

• We randomly select 6 to be moved using an operator

▪ Swap Operator Neighbourhood
• [6,2,3,4,5,1,7,8]
• [1,6,3,4,5,2,7,8]
• [1,2,6,4,5,3,7,8]
• [1,2,3,6,5,4,7,8]
• [1,2,3,4,6,5,7,8]
• [1,2,3,4,5,7,6,8]
• [1,2,3,4,5,8,7,6]

▪ Insertion Operator Neighbourhood
• [6,1,2,3,4,5,7,8]
• [1,6,2,3,4,5,7,8]
• [1,2,6,3,4,5,7,8]
• [1,2,3,6,4,5,7,8]
• [1,2,3,4,6,5,7,8]
• [1,2,3,4,5,7,6,8]
• [1,2,3,4,5,7,8,6]

▪ Variable Neighborood Search - Example



▪ Guided Local Search
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Single Solution Methods Variants

▪ In GLS, a set of m features of a solution 
are defined. 

▪ A solution feature defines a given 
characteristic of a solution regarding the 
optimization problem to solve. 

▪ A cost is associated to each feature 
(updated during the search process). 

▪ When trapped by a local optima, the 
algorithm will penalize solutions 
according to some selected features.



▪ Continuous Diversification - this strategy introduces during a search a bias to encourage 
diversification

• 𝑣 is the actual move value

• 𝑣′ is the penalized move value

• 𝑤 is a penalty factor

• 𝑞 is the frequency ratio
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𝑣′ = ቊ
𝑣 𝑖𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑠

𝑣 1 ± 𝑤𝑞 𝑖𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑖𝑚𝑝𝑟𝑜𝑣𝑒

1 0 0 1 0

Bit Move
Frequency 

Ratio

1 0.1

2 0.3

3 0.05

4 0.35

5 0.2

Current Solution

Best Descent

0 0 0 1 0

1 1 0 1 0

1 0 1 1 0

1 0 0 0 0

1 0 0 1 1

Move 
Value

10

8

10

7

8

Penalized 
Move Value

Obj. Value
6

10 (1+0.1)=11

8 (1+0.3)=10.4

10 (1+0.05)=10.5

7 (1+0.35)=9.45

8 (1+0.2)=9.2

▪ Guided Local Search - Example

Single Solution Methods Variants
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Single Solution Methods Variants

▪ Very-large Neighbourhood Search

▪ Explore neighbourhoods that would be impossible 
to analyse using exhaustive search 

▪ Integrates exact methods of optimization and local 
search

• Start with an initial feasible solution

• Select a very large neighbourhood 

• Optimize the neighbourhood using exact 
methods of optimization

• Repeat
Optimize using exact methods



Exploration and Exploitation
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▪ Sooner or later, every optimization process ends (convergence)

▪ An algorithm has converged if it cannot reach new candidate solutions 
anymore, or if it keeps on producing candidate solutions from a small 
subset of the solution space (i.e. the objective value is no longer 
improved)

▪ Premature convergence = convergence to local optimum

▪ What is the basic reason for premature convergence?

• Exploration – search in distant areas of the search space, strong 
randomization, slow improvement

• Exploitation – analyze neighborhood of current best solutions, fast 
improvement/ local convergence

Convergence

17



Exploration and Exploitation
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Exploration: In this phase, it is easy to find new solutions. 

We aim to explore different solutions of the search space to 

identify the region to intensify the search. We apply larger 

perturbations at this stage

Exploitation: In this phase, hopefully we have 

found the region of the landscape where the global 

optimal is located. We aim to intensify the search 

and explore smaller perturbations.

Exploration + Exploitation: This is the critical phase 

of the metaheuristic search. Too much exploitation will 

lead the algorithm to converge to local optima; Too 

much exploration will lead the algorithm to behave as a 

random search algorithm, which will require a very 

large number of iterations to find the global optima 

Obj. Value

CPU Time



Exploration and Exploitation
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Poor intensification: The 

graph presents an irregular 

behaviour and the objective 

value is consistently 

increasing and decreasing 

without converging to a 

minimum value. Exploitation 

needs to be accentuated and 

exploration eased

Poor Exploration: The 

graph presents a 

smooth shape, and the 

objective value 

converges quickly to 

local optima solution. 

Exploration needs to be 

accentuated and 

exploitation eased

Obj. Value

CPU Time



Exploration and Exploitation
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Late exploitation: The 

graph presents an irregular 

behaviour but the objective 

value is consistently 

decreasing. In the long run, 

good (near-optimal) 

solutions are found. 

Exploitation needs to be 

accentuated.

Early exploitation: The graph 

presents a smooth shape and the 

objective value is consistently 

decreasing. In the long run, good 

(near-optimal) solutions can be 

found. Exploration needs to be 

accentuated.

Obj. Value

CPU Time



▪ Exploitation Methods

• Reduce probability of accepting worse solutions

• Decrease tabu list size (short-term memory)

• Apply best descent algorithms

• Use search operators that apply smaller perturbations

• Analyze neighborhood of selected elite solutions (medium-term memory)

▪ Exploration Methods

• Increase probability of accepting worse solutions

• Increase tabu list size (short-term memory)

• Apply first descent algorithms

• Use search operators that apply larger perturbations

• Apply Iterated/multistart local search

• Introduce bias to encourage moving to unexplored search areas (long-term memory)

21

Exploration and Exploitation



▪ If the probability of accepting worse solutions decreases slowly, convergence to 
the global optimum is likely to occur, but the number of iterations required may 
be very large

▪ If the probability of accepting worse solutions decreases fast, convergence to a 
local optimum is likely and the algorithm will behave as a pure local search 

Probability of accepting worse solutions
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▪ The role of the short-term memory is to 
store the recent history of the search to 
prevent cycling.

▪ Storing complete solutions generally 
consumes a massive amount of space 
and time. Instead, the search moves 
are typically stored. 

▪ The number of iterations a move is in
the short term memory (tabu list size) 
is critical for the metaheuristic 
performance 

▪ The smaller is the size of the tabu list, 
the more likely is the probability of 
cycling. Larger sizes of the tabu list will 
provide many restrictions and 
encourage the exploration. 

Short-Term Memory

23

Tabu Size



▪ Medium-term memory has been introduced in tabu search to encourage exploitation of the 
search. 

▪ The role of medium-term memory is to exploit the information of the best-found solutions (elite 
solutions) to guide the search in promising regions of the search space. 

▪ Path-relinking is a common strategy used for exploitation. 

Medium-Term Memory
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▪ Long-term memory has been introduced in tabu search to encourage the 
exploration of the search. 

▪ The role of the long-term memory is to force the search in non-explored 
regions of the search space.

▪ The main representation used for the long-term memory is the frequency 
memory. 

▪ Two popular diversification strategies may be applied:

• Continuous diversification (type of guided local search): This 
strategy introduces during a search a bias to encourage diversification

• Restart diversification (type of iterated local search): This strategy 
consists in introducing in the current or best solution the least visited 
components. Then a new search is restarted from this new solution.

Long Term Memory

25



▪ First Descent: This strategy consists in 
choosing the first improving neighbour that is 
better than the current solution. Then, an 
improving neighbour is immediately selected 
to replace the current solution --- mostly 
useful during the exploration phase

▪ Best Descent: In this strategy, the best 
neighbour (i.e., neighbour that improves the 
most the cost function) is selected. The 
neighbourhood is evaluated in a fully 
deterministic manner --- mostly useful during 
the exploitation phase

▪ N-Descent: In this strategy, N random 
solutions in the neighbourhood are evaluated. 
The neighbour that improves the most the 
cost function) is selected --- useful if exploring 
the full neighbourhood is too costly

First Descent vs Best Descent

26
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Search Operator

▪ The efficiency of a solution 
encoding is also related to 
the search operator. 

▪ When defining a solution 
encoding, one has to bear in 
mind how the solution will be 
perturbed.

▪ More drastic perturbations 
(for instance flipping 2 bits 
instead of 1) encourage 
diversification

Binary encoding – flip n bits 
of the solution (typically 1 or 
2 bits)

Discrete encoding – update 
n bits of the solution by 
randomly generating a new 
value (typically 1 or 2 bits)

Permutation encoding – swap 
the location of n elements 
(typically 2 elements)

Real encoding – update n bits 
of the solution by randomly 
generating a new value within 
a certain range (typically 2 
elements)

1 0 … 1
Current 
solution

1 1 … 1
New

solution

A F … A
Current 
solution

A G … A
New

solution

1.2 2.4 … 0.8
Current 
solution

New
solution

1.2 1.9 … 0.8

(A,B,C,D,E,F,G,H,I,J)Set of feasible 
alternatives

rnd(-1,1)=-0.5
Random 
number

A B … J
Current 
solution

B A … J
New

solution



▪ Adaptive local search memorizes some information from the search iterative 
process with the intention to guide the search for more promising solutions. 

▪ Mostly used to simplify the calibration of the metaheuristic parameters. 

▪ Adaptive is a general term - it can be applied to different features of the 
metaheuristic algorithm,
• Constraint Handling (e.g. decreasing the weight to penalize infeasible solutions when many 

feasible solutions are generated, and increasing otherwise.

• Selection of the Move Operator: Change the move operator whenever a better solution is not 
found after n iterations.

• Simulated Annealing Parameter Tunning: Most of the cooling schedules are static. In an 
adaptive cooling schedule, the decreasing rate is dynamic and depends on some information 
obtained during the search

• Tabu Search Parameter Tunning: The size of the tabu list can be updated according to the 
search memory. For instance, the size is updated upon the performance of the search in the last 
iterations

• Iterated Local Search: A perturbation is generated whenever a better solution is not found after n
iterations. 

Adaptive Metaheuristics
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▪ Adaptive local search is an advanced feature in metaheuristic 
optimization. If successfully implemented it can:

• Make easier the calibration of the parameters

• Ensure convergence to better solutions faster

▪ However, careful analysis need to be done to understand the value of the 
adaptative approach

• Overfitting: Many different instances must be evaluated to understand if the 
benefits from the adaptative approach can be extrapolated.

• More parameters to calibrate: Although the adaptive approach aims to 
simplify the parameter calibration, it may in fact add new parameters to the 
algorithm. The key is to evaluate the robustness of these parameters (i.e. the 
algorithm should not be very sensitive to the new parameters --- an example 
will be provided in the next class) 

Trade-off between Complexity and Simplicity 
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▪ Combinations of algorithms such as different metaheuristics, exact 
methods of optimization, and machine learning techniques have 
provided very powerful search algorithms. 

▪ Four different types of combinations are typically considered

• Combining metaheuristics with (complementary) metaheuristics.

• Combining metaheuristics with exact methods of optimization.

• Combining metaheuristics with machine learning and data mining 
techniques.

Hybridization

30



Fitness Landscape Analysis
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▪ Unimodal Landscape

Different Problems – Different Landscapes

32

Obj. Value

Search Space

Easy to solve: Hill climbing + 

multistart local search will be 

enough to find a the global 

optima



▪ Unimodal Rugged Landscape

Different Problems – Different Landscapes
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Obj. Value

Search Space

Hard to solve: Simulated 

Annealing and Tabu Search are 

effective in these cases but 

exploration + exploitation 

methods need to be well 

calibrated. 



▪ Multimodal Landscape

Different Problems – Different Landscapes
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Obj. Value

Search Space

Hard to solve: Simulated 

Annealing and Tabu Search 

are effective in these cases 

but exploration + exploitation 

methods need to be well 

calibrated. 

Iterated Local Search can be 

useful in these cases

Population-based 

metaheuristics can be a good 

alternative to local search 

methods (2nd half of the 

course)



▪ Multimodal Rugged Landscape

Different Problems – Different Landscapes
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Obj. Value

Search Space

Very Hard to solve: Simulated 

Annealing and Tabu Search may 

not be the most effecting 

metaheuristics to use. 

Population-based metaheuristics 

may be a better alternative (2nd

half of the course)



▪ Plain Landscape

Different Problems – Different Landscapes
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Obj. Value

Search Space

Problem with the objective 

function: A flat landscape 

indicates that regardless of the 

solution obtained the objective 

values are all going to be 

similar. This means that either 

there is nothing to optimize 

and therefore the problem is 

not relevant ; or the objective 

function is not well defined.

A flat landscape has nothing to 

do with the metaheuristic 

performance



▪ Multimodal with plateaus

Different Problems – Different Landscapes
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Obj. Value

Search Space

Hard to solve: Plateaus are 

tediously crossed by 

metaheuristics. Indeed, no 

information will guide the search 

toward better regions. Eventually 

the metaheuristic will converge to 

local optima solutions

To cope with these cases, larger 

neighbourhoods may be 

considered (very large 

neighbourhood search – next 

class).

Adding a secondary objective to 

the problem will help to shape the 

landscape eliminating plateaus



▪ Constrained Landscape

Different Problems – Different Landscapes
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Obj. Value

Search Space

Depend on the type of 

constraints: A landscape with a 

small number of constraints is 

easy to optimize using local 

search methods (depending also 

on how rugged the landscape is).

Highly constrained landscapes 

are harder to solve, they may 

require the use of constraint 

handling techniques, and/or larger 

neighbourhoods to avoid getting 

stuck in a constraint region



▪ Reject Strategies: represent a simple approach, where only feasible 
solutions are kept during the search and then infeasible solutions are 
automatically discarded. This kind of strategies are conceivable if the portion of 
infeasible solutions of the search space is very small.

▪ Repairing strategies: A repairing procedure is applied to infeasible solutions 
to generate feasible ones (e.g. extracting from the knapsack some elements to 
satisfy the capacity constraint in the knapsack problem)

▪ Penalizing Strategies: reject strategies do not exploit infeasible solutions. 
Indeed, it would be interesting to use some information on infeasible solutions to 
guide the search. In penalizing strategies, infeasible solutions are considered 
during the search process. The unconstrained objective function is extended by 
a penalty function that will penalize infeasible solutions

▪ Preserving Strategies: In preserving strategies for constraint handling, a 
specific representation and operators will ensure the generation of 
feasible solutions. They incorporate problem-specific knowledge into the 
representation and search operators to generate only feasible solutions

Constraint Handling Techniques

39



▪ The objective function f may be penalized in a linear manner, where c(s) 
represents the cost of the constraint violation and λ the weights given to 
infeasibilities.

▪ Different penalty functions may be use:

• Violated constraints: A straightforward function is to count the 
number of violated constraints. No information is used on how close 
the solution is to the feasible region of the search space. (e.g. number 
of bins with capacity violated in the bin-packing problem)

• Amount of infeasibility: Information on how close a solution is to a 
feasible region is taken into account (e.g. how much the capacity of a 
bin is exceeded in the bin-packing problem). 

Penalizing Strategies

40



Comparing Optimization Algorithms
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▪ Metaheuristics are randomized algorithms

▪ Performance values cannot be given absolute!

▪ 1 run = 1 application of an optimization algorithm to a problem, runs are 
independent from all prior runs

▪ Results can be different for each run!

▪ Executing algorithm one time does not give reliable information

▪ Statistical evaluation over a set of runs necessary

Randomized Algorithms

42



▪ Two key parameter:

• Solution quality reached after a certain runtime

• Runtime to reach a certain solution quality

Key Parameters

43

Obj. Value

Runtime

Vertical Cut: Best 

objective value found 

after a certain runtime

Horizontal Cut: Runtime 

needed to reach certain 

objective value

▪ What is runtime?

• CPU Time – easy to interpret, 
but machine dependent 
measure

• No. of Iterations – machine 
independent measure, but no 
clear relation to real time 
(different iterations may take 
longer to be evaluated



▪ Many trials must be carried out to derive significant statistical results. 
From this set of trials, many measures may be computed: mean, median, 
minimum, maximum, standard deviation, the success rate that the 
reference solution (e.g., global optimum, best known, given goal) has 
been attained

▪ The random variable associated with the average of the results often 
follow a Gaussian with average 𝑚 and standard deviation 𝜎.

▪ Confidence intervals (CI) can be used to indicate the reliability of the 
experiments. In practice, most confidence intervals are stated at the 95% 
level. It represents  the probability that the experimental value is located 
in the interval 𝑚 − 1.96𝜎/ 𝑛 and 𝑚 + 1.96𝜎/ 𝑛 , where 𝑛 is the number 
of evaluations . 

▪ A result with small CI is more reliable than results with a large CI.

Statistical Analysis

44



▪ Robustness measures the performance of the algorithms according to 
different types of input instances and/or problems. 

▪ Robustness may also be related to the average/deviation behaviour of the 
algorithm over different runs of the algorithm on the same instance

▪ The metaheuristic should be able to perform well on a large variety of 
instances and/or problems using the same parameters. 

▪ The parameters of the metaheuristic may be overfitted using the training 
set of instances and less efficient for other instances/random seeds.

Robustness
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Design versus Control Problems 
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Design versus Control Problems 
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Design versus Control Problems 



Design versus Control Problems 
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▪ Design problems: Design problems are generally solved once. They need a 
very good quality of solutions whereas the time available to solve the problem 
is important. These problems involve an important financial investment; (e.g. 
telecommunication network design and processor design, etc.) 

▪ Control problems: Control problems represent the other extreme where the 
problem must be solved frequently in real time. These problems require very 
fast heuristics are needed; the quality of the solutions is less critical (e.g. 
routing messages in a computer network and traffic management in a city.

▪ Planning problems: Between these extremes, one can find an intermediate 
class of problems represented by planning problems. In this class of 
problems, a trade-off between the quality of solution and the search time 
must be optimized; (e.g. scheduling of operations ; task assignment, etc.)


