
Common Concepts for Metaheuristics

1

Nuno Antunes Ribeiro

Assistant Professor

Optimization Methods

2

Exact Methods
Approximate

Methods

Branch and X
Exhaustive

Search

Simplex

Non-linear
Programming

Dynamic
Programming

Heuristics Meta-Heuristics

Single Solution
Population of

Solutions

Local Search
Simulated
Annealing

Tabu Search
Evolutionary
Algorithms

Swarm Search

▪ Exhaustive search methods are
ineffective when solving very large
optimization problems

▪ Exact methods of Optimization
solve complex problems without the
need to exhaustively search for all
possible solutions of a problem. These
methos ensure that the solution
obtained is the optimal one.

▪ In many instance, the solution space
for solutions is so large that exact
methods of optimization cannot even
find feasible solutions for a problem.
That is when we should use
approximate methods 3

Optimization Methods

Approximate Methods

4

Approximate
Methods

Specialized
Heuristics

Meta-Heuristics

Single Solution
(Neighbourhood Search)

Population of
Solutions

Local Search, or
Hill Climbing

Simulated
Annealing

Tabu Search
Evolutionary
Algorithms

Genetic
Algorithm

Greedy
Heuristics

Randomized
Heuristics

Variants (iterated, variable,
guided, very-large, etc.)

GRASP

Genetic
Programming

Swarm Search

Particle Swarm
Optimization

Ant Colony
Optimization

Bee Colony
Optimization

Evolution
Strategies

Differential
Evolution

▪ Single solution approaches (or
neighbourhood search) focus on
modifying and improving a single
candidate solution; single solution
metaheuristics include simulated
annealing, tabu search, iterated local
search, variable neighbourhood search,
and guided local search.

▪ Population-based approaches maintain
and improve multiple candidate solutions,
often using population characteristics to
guide the search; population based
metaheuristics include evolutionary
computation, genetic algorithms, and
particle swarm optimization.

Approximate Solution Methods

5

▪ Local Search (or Hill Climbing): oldest and simplest metaheuristic method. At each
iteration, the heuristic replaces the current solution by a neighbour that improves the
objective function. The search stops when all candidate neighbours are worse than the
current solution, meaning a local optimum is reached.

▪ Simulated Annealing: Similar to local search, but worse solutions might be accepted. It
uses a control parameter, called temperature, to determine the probability of accepting
nonimproving solutions. The temperature is gradually decreased until the algorithm behaves
as pure local search.

▪ Tabu Search: Similar to random walks, as it always accepts nonimproving solutions. In
contrast to random walks, TS explores the whole neighborhood of a solution (best descent).
To avoid cycles, TS discards the neighbours that have been recently visited by memorizing
them in a tabu list.

▪ GRASP: Iterative greedy heuristic. At each iteration a feasible solution is generated using a
randomized greedy algorithm. Afterwards a neighbourhood search algorithm is applied to
improve the solution generated.

Single Solution Methods

6

▪ Multistart Local Search

▪ Iterated Local Search

▪ Multistage Local Search

▪ Variable Neighbourhood Search

▪ Guided Local Search

▪ Very-Large Neighbourhood Search

Variants - Single Solution Methods

7

Variants - Single Solution Methods

8

• Multistart local search, the initial solution is always chosen randomly and then is
unrelated to the generated local optima.

• Iterated Local Search improves the classical multistart local search by perturbing the
local optima and reconsidering them as initial solutions

Multistart Iterated

▪ Multistart vs Iterated Local Search

Variants - Single Solution Methods

9

▪ Iterated Local Search - Example

▪ Restart diversification in Tabu Search - this strategy consists in introducing in the current or
best solution the least visited components. Then a new search is restarted from this new
solution.

▪ A perturbation is applied to the current solution considering the frequency memory of the
search procedure so far.

▪ The frequency memory stores for each component of the solution encoding the number of
times the component is present in all visited solutions

▪ Example:

• How often a variable had assumed a value 1 in a binary problem

• How often a variable has assumed a certain value in a discrete problem

• How often an edge have been selected in a permutation problem

• Etc.

▪ The basic idea of Multistage Local Search is
having successive stages where different
metaheuristic strategies are applied.

▪ For instance:

• Having different search operators (e.g. swap
operator followed by 2-opt operator)

• Having different neighbourhood
explorations (e.g. first descent, followed by
best descent)

• Having different metaheuristic approaches
(e.g. genetic algorithm followed by simulated
annealing)

10

Exploration

Exploitation

Small
neighbourhood
sizes

Full exploration
of the
neighbourhood
– best descent

Large
neighbourhood
sizes

No full
exploration of the
neighbourhood –
first descent

Stage 1

Stage 2

Variants - Single Solution Methods

▪ Multistage Local Search

▪ Variable Neighbourhood Search

11

Variants - Single Solution Methods

▪ The basic idea of Variable Neighbourhood
Search VNS is to successively explore a set of
predefined neighbourhoods to provide a better
solution.

▪ It explores either at random or systematically a
set of neighbourhoods to get different local
optima and to escape from local optima.

▪ VNS exploits the fact that using various
neighbourhoods in local search may generate
different local optima and that the global optima
is a local optima for a given neighbourhood.

▪ Different neighbourhoods generate different
landscapes

The neighbourhood of a solution

is different depending on the

move operator used

Different Neighbourhoods

12

▪ Current Solution: [1,2,3,4,5,6,7,8]

• We randomly select 6 to be moved using an operator

▪ Swap Operator Neighbourhood
• [6,2,3,4,5,1,7,8]
• [1,6,3,4,5,2,7,8]
• [1,2,6,4,5,3,7,8]
• [1,2,3,6,5,4,7,8]
• [1,2,3,4,6,5,7,8]
• [1,2,3,4,5,7,6,8]
• [1,2,3,4,5,8,7,6]

▪ Insertion Operator Neighbourhood
• [6,1,2,3,4,5,7,8]
• [1,6,2,3,4,5,7,8]
• [1,2,6,3,4,5,7,8]
• [1,2,3,6,4,5,7,8]
• [1,2,3,4,6,5,7,8]
• [1,2,3,4,5,7,6,8]
• [1,2,3,4,5,7,8,6]

▪ Variable Neighborood Search - Example

▪ Guided Local Search

13

Single Solution Methods Variants

▪ In GLS, a set of m features of a solution
are defined.

▪ A solution feature defines a given
characteristic of a solution regarding the
optimization problem to solve.

▪ A cost is associated to each feature
(updated during the search process).

▪ When trapped by a local optima, the
algorithm will penalize solutions
according to some selected features.

▪ Continuous Diversification - this strategy introduces during a search a bias to encourage
diversification

• 𝑣 is the actual move value

• 𝑣′ is the penalized move value

• 𝑤 is a penalty factor

• 𝑞 is the frequency ratio

14

𝑣′ = ቊ
𝑣 𝑖𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑠

𝑣 1 ± 𝑤𝑞 𝑖𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑖𝑚𝑝𝑟𝑜𝑣𝑒

1 0 0 1 0

Bit Move
Frequency

Ratio

1 0.1

2 0.3

3 0.05

4 0.35

5 0.2

Current Solution

Best Descent

0 0 0 1 0

1 1 0 1 0

1 0 1 1 0

1 0 0 0 0

1 0 0 1 1

Move
Value

10

8

10

7

8

Penalized
Move Value

Obj. Value
6

10 (1+0.1)=11

8 (1+0.3)=10.4

10 (1+0.05)=10.5

7 (1+0.35)=9.45

8 (1+0.2)=9.2

▪ Guided Local Search - Example

Single Solution Methods Variants

15

Single Solution Methods Variants

▪ Very-large Neighbourhood Search

▪ Explore neighbourhoods that would be impossible
to analyse using exhaustive search

▪ Integrates exact methods of optimization and local
search

• Start with an initial feasible solution

• Select a very large neighbourhood

• Optimize the neighbourhood using exact
methods of optimization

• Repeat
Optimize using exact methods

Exploration and Exploitation

16

Nuno Antunes Ribeiro

Assistant Professor

▪ Sooner or later, every optimization process ends (convergence)

▪ An algorithm has converged if it cannot reach new candidate solutions
anymore, or if it keeps on producing candidate solutions from a small
subset of the solution space (i.e. the objective value is no longer
improved)

▪ Premature convergence = convergence to local optimum

▪ What is the basic reason for premature convergence?

• Exploration – search in distant areas of the search space, strong
randomization, slow improvement

• Exploitation – analyze neighborhood of current best solutions, fast
improvement/ local convergence

Convergence

17

Exploration and Exploitation

18

Exploration: In this phase, it is easy to find new solutions.

We aim to explore different solutions of the search space to

identify the region to intensify the search. We apply larger

perturbations at this stage

Exploitation: In this phase, hopefully we have

found the region of the landscape where the global

optimal is located. We aim to intensify the search

and explore smaller perturbations.

Exploration + Exploitation: This is the critical phase

of the metaheuristic search. Too much exploitation will

lead the algorithm to converge to local optima; Too

much exploration will lead the algorithm to behave as a

random search algorithm, which will require a very

large number of iterations to find the global optima

Obj. Value

CPU Time

Exploration and Exploitation

19

Poor intensification: The

graph presents an irregular

behaviour and the objective

value is consistently

increasing and decreasing

without converging to a

minimum value. Exploitation

needs to be accentuated and

exploration eased

Poor Exploration: The

graph presents a

smooth shape, and the

objective value

converges quickly to

local optima solution.

Exploration needs to be

accentuated and

exploitation eased

Obj. Value

CPU Time

Exploration and Exploitation

20

Late exploitation: The

graph presents an irregular

behaviour but the objective

value is consistently

decreasing. In the long run,

good (near-optimal)

solutions are found.

Exploitation needs to be

accentuated.

Early exploitation: The graph

presents a smooth shape and the

objective value is consistently

decreasing. In the long run, good

(near-optimal) solutions can be

found. Exploration needs to be

accentuated.

Obj. Value

CPU Time

▪ Exploitation Methods

• Reduce probability of accepting worse solutions

• Decrease tabu list size (short-term memory)

• Apply best descent algorithms

• Use search operators that apply smaller perturbations

• Analyze neighborhood of selected elite solutions (medium-term memory)

▪ Exploration Methods

• Increase probability of accepting worse solutions

• Increase tabu list size (short-term memory)

• Apply first descent algorithms

• Use search operators that apply larger perturbations

• Apply Iterated/multistart local search

• Introduce bias to encourage moving to unexplored search areas (long-term memory)

21

Exploration and Exploitation

▪ If the probability of accepting worse solutions decreases slowly, convergence to
the global optimum is likely to occur, but the number of iterations required may
be very large

▪ If the probability of accepting worse solutions decreases fast, convergence to a
local optimum is likely and the algorithm will behave as a pure local search

Probability of accepting worse solutions

22

▪ The role of the short-term memory is to
store the recent history of the search to
prevent cycling.

▪ Storing complete solutions generally
consumes a massive amount of space
and time. Instead, the search moves
are typically stored.

▪ The number of iterations a move is in
the short term memory (tabu list size)
is critical for the metaheuristic
performance

▪ The smaller is the size of the tabu list,
the more likely is the probability of
cycling. Larger sizes of the tabu list will
provide many restrictions and
encourage the exploration.

Short-Term Memory

23

Tabu Size

▪ Medium-term memory has been introduced in tabu search to encourage exploitation of the
search.

▪ The role of medium-term memory is to exploit the information of the best-found solutions (elite
solutions) to guide the search in promising regions of the search space.

▪ Path-relinking is a common strategy used for exploitation.

Medium-Term Memory

24

▪ Long-term memory has been introduced in tabu search to encourage the
exploration of the search.

▪ The role of the long-term memory is to force the search in non-explored
regions of the search space.

▪ The main representation used for the long-term memory is the frequency
memory.

▪ Two popular diversification strategies may be applied:

• Continuous diversification (type of guided local search): This
strategy introduces during a search a bias to encourage diversification

• Restart diversification (type of iterated local search): This strategy
consists in introducing in the current or best solution the least visited
components. Then a new search is restarted from this new solution.

Long Term Memory

25

▪ First Descent: This strategy consists in
choosing the first improving neighbour that is
better than the current solution. Then, an
improving neighbour is immediately selected
to replace the current solution --- mostly
useful during the exploration phase

▪ Best Descent: In this strategy, the best
neighbour (i.e., neighbour that improves the
most the cost function) is selected. The
neighbourhood is evaluated in a fully
deterministic manner --- mostly useful during
the exploitation phase

▪ N-Descent: In this strategy, N random
solutions in the neighbourhood are evaluated.
The neighbour that improves the most the
cost function) is selected --- useful if exploring
the full neighbourhood is too costly

First Descent vs Best Descent

26

27

Search Operator

▪ The efficiency of a solution
encoding is also related to
the search operator.

▪ When defining a solution
encoding, one has to bear in
mind how the solution will be
perturbed.

▪ More drastic perturbations
(for instance flipping 2 bits
instead of 1) encourage
diversification

Binary encoding – flip n bits
of the solution (typically 1 or
2 bits)

Discrete encoding – update
n bits of the solution by
randomly generating a new
value (typically 1 or 2 bits)

Permutation encoding – swap
the location of n elements
(typically 2 elements)

Real encoding – update n bits
of the solution by randomly
generating a new value within
a certain range (typically 2
elements)

1 0 … 1
Current
solution

1 1 … 1
New

solution

A F … A
Current
solution

A G … A
New

solution

1.2 2.4 … 0.8
Current
solution

New
solution

1.2 1.9 … 0.8

(A,B,C,D,E,F,G,H,I,J)Set of feasible
alternatives

rnd(-1,1)=-0.5
Random
number

A B … J
Current
solution

B A … J
New

solution

▪ Adaptive local search memorizes some information from the search iterative
process with the intention to guide the search for more promising solutions.

▪ Mostly used to simplify the calibration of the metaheuristic parameters.

▪ Adaptive is a general term - it can be applied to different features of the
metaheuristic algorithm,
• Constraint Handling (e.g. decreasing the weight to penalize infeasible solutions when many

feasible solutions are generated, and increasing otherwise.

• Selection of the Move Operator: Change the move operator whenever a better solution is not
found after n iterations.

• Simulated Annealing Parameter Tunning: Most of the cooling schedules are static. In an
adaptive cooling schedule, the decreasing rate is dynamic and depends on some information
obtained during the search

• Tabu Search Parameter Tunning: The size of the tabu list can be updated according to the
search memory. For instance, the size is updated upon the performance of the search in the last
iterations

• Iterated Local Search: A perturbation is generated whenever a better solution is not found after n
iterations.

Adaptive Metaheuristics

28

▪ Adaptive local search is an advanced feature in metaheuristic
optimization. If successfully implemented it can:

• Make easier the calibration of the parameters

• Ensure convergence to better solutions faster

▪ However, careful analysis need to be done to understand the value of the
adaptative approach

• Overfitting: Many different instances must be evaluated to understand if the
benefits from the adaptative approach can be extrapolated.

• More parameters to calibrate: Although the adaptive approach aims to
simplify the parameter calibration, it may in fact add new parameters to the
algorithm. The key is to evaluate the robustness of these parameters (i.e. the
algorithm should not be very sensitive to the new parameters --- an example
will be provided in the next class)

Trade-off between Complexity and Simplicity

29

▪ Combinations of algorithms such as different metaheuristics, exact
methods of optimization, and machine learning techniques have
provided very powerful search algorithms.

▪ Four different types of combinations are typically considered

• Combining metaheuristics with (complementary) metaheuristics.

• Combining metaheuristics with exact methods of optimization.

• Combining metaheuristics with machine learning and data mining
techniques.

Hybridization

30

Fitness Landscape Analysis

31

Nuno Antunes Ribeiro

Assistant Professor

▪ Unimodal Landscape

Different Problems – Different Landscapes

32

Obj. Value

Search Space

Easy to solve: Hill climbing +

multistart local search will be

enough to find a the global

optima

▪ Unimodal Rugged Landscape

Different Problems – Different Landscapes

33

Obj. Value

Search Space

Hard to solve: Simulated

Annealing and Tabu Search are

effective in these cases but

exploration + exploitation

methods need to be well

calibrated.

▪ Multimodal Landscape

Different Problems – Different Landscapes

34

Obj. Value

Search Space

Hard to solve: Simulated

Annealing and Tabu Search

are effective in these cases

but exploration + exploitation

methods need to be well

calibrated.

Iterated Local Search can be

useful in these cases

Population-based

metaheuristics can be a good

alternative to local search

methods (2nd half of the

course)

▪ Multimodal Rugged Landscape

Different Problems – Different Landscapes

35

Obj. Value

Search Space

Very Hard to solve: Simulated

Annealing and Tabu Search may

not be the most effecting

metaheuristics to use.

Population-based metaheuristics

may be a better alternative (2nd

half of the course)

▪ Plain Landscape

Different Problems – Different Landscapes

36

Obj. Value

Search Space

Problem with the objective

function: A flat landscape

indicates that regardless of the

solution obtained the objective

values are all going to be

similar. This means that either

there is nothing to optimize

and therefore the problem is

not relevant ; or the objective

function is not well defined.

A flat landscape has nothing to

do with the metaheuristic

performance

▪ Multimodal with plateaus

Different Problems – Different Landscapes

37

Obj. Value

Search Space

Hard to solve: Plateaus are

tediously crossed by

metaheuristics. Indeed, no

information will guide the search

toward better regions. Eventually

the metaheuristic will converge to

local optima solutions

To cope with these cases, larger

neighbourhoods may be

considered (very large

neighbourhood search – next

class).

Adding a secondary objective to

the problem will help to shape the

landscape eliminating plateaus

▪ Constrained Landscape

Different Problems – Different Landscapes

38

Obj. Value

Search Space

Depend on the type of

constraints: A landscape with a

small number of constraints is

easy to optimize using local

search methods (depending also

on how rugged the landscape is).

Highly constrained landscapes

are harder to solve, they may

require the use of constraint

handling techniques, and/or larger

neighbourhoods to avoid getting

stuck in a constraint region

▪ Reject Strategies: represent a simple approach, where only feasible
solutions are kept during the search and then infeasible solutions are
automatically discarded. This kind of strategies are conceivable if the portion of
infeasible solutions of the search space is very small.

▪ Repairing strategies: A repairing procedure is applied to infeasible solutions
to generate feasible ones (e.g. extracting from the knapsack some elements to
satisfy the capacity constraint in the knapsack problem)

▪ Penalizing Strategies: reject strategies do not exploit infeasible solutions.
Indeed, it would be interesting to use some information on infeasible solutions to
guide the search. In penalizing strategies, infeasible solutions are considered
during the search process. The unconstrained objective function is extended by
a penalty function that will penalize infeasible solutions

▪ Preserving Strategies: In preserving strategies for constraint handling, a
specific representation and operators will ensure the generation of
feasible solutions. They incorporate problem-specific knowledge into the
representation and search operators to generate only feasible solutions

Constraint Handling Techniques

39

▪ The objective function f may be penalized in a linear manner, where c(s)
represents the cost of the constraint violation and λ the weights given to
infeasibilities.

▪ Different penalty functions may be use:

• Violated constraints: A straightforward function is to count the
number of violated constraints. No information is used on how close
the solution is to the feasible region of the search space. (e.g. number
of bins with capacity violated in the bin-packing problem)

• Amount of infeasibility: Information on how close a solution is to a
feasible region is taken into account (e.g. how much the capacity of a
bin is exceeded in the bin-packing problem).

Penalizing Strategies

40

Comparing Optimization Algorithms

41

Nuno Antunes Ribeiro

Assistant Professor

▪ Metaheuristics are randomized algorithms

▪ Performance values cannot be given absolute!

▪ 1 run = 1 application of an optimization algorithm to a problem, runs are
independent from all prior runs

▪ Results can be different for each run!

▪ Executing algorithm one time does not give reliable information

▪ Statistical evaluation over a set of runs necessary

Randomized Algorithms

42

▪ Two key parameter:

• Solution quality reached after a certain runtime

• Runtime to reach a certain solution quality

Key Parameters

43

Obj. Value

Runtime

Vertical Cut: Best

objective value found

after a certain runtime

Horizontal Cut: Runtime

needed to reach certain

objective value

▪ What is runtime?

• CPU Time – easy to interpret,
but machine dependent
measure

• No. of Iterations – machine
independent measure, but no
clear relation to real time
(different iterations may take
longer to be evaluated

▪ Many trials must be carried out to derive significant statistical results.
From this set of trials, many measures may be computed: mean, median,
minimum, maximum, standard deviation, the success rate that the
reference solution (e.g., global optimum, best known, given goal) has
been attained

▪ The random variable associated with the average of the results often
follow a Gaussian with average 𝑚 and standard deviation 𝜎.

▪ Confidence intervals (CI) can be used to indicate the reliability of the
experiments. In practice, most confidence intervals are stated at the 95%
level. It represents the probability that the experimental value is located
in the interval 𝑚 − 1.96𝜎/ 𝑛 and 𝑚 + 1.96𝜎/ 𝑛 , where 𝑛 is the number
of evaluations .

▪ A result with small CI is more reliable than results with a large CI.

Statistical Analysis

44

▪ Robustness measures the performance of the algorithms according to
different types of input instances and/or problems.

▪ Robustness may also be related to the average/deviation behaviour of the
algorithm over different runs of the algorithm on the same instance

▪ The metaheuristic should be able to perform well on a large variety of
instances and/or problems using the same parameters.

▪ The parameters of the metaheuristic may be overfitted using the training
set of instances and less efficient for other instances/random seeds.

Robustness

45

Design versus Control Problems

46

Design versus Control Problems

47

48

Design versus Control Problems

Design versus Control Problems

49

▪ Design problems: Design problems are generally solved once. They need a
very good quality of solutions whereas the time available to solve the problem
is important. These problems involve an important financial investment; (e.g.
telecommunication network design and processor design, etc.)

▪ Control problems: Control problems represent the other extreme where the
problem must be solved frequently in real time. These problems require very
fast heuristics are needed; the quality of the solutions is less critical (e.g.
routing messages in a computer network and traffic management in a city.

▪ Planning problems: Between these extremes, one can find an intermediate
class of problems represented by planning problems. In this class of
problems, a trade-off between the quality of solution and the search time
must be optimized; (e.g. scheduling of operations ; task assignment, etc.)

